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Summary 

An increasing number of river sections have been restored in the past few decades but 

only a small number of these projects have been monitored. The few monitoring studies 

mainly investigated single organism groups, reported contrasting results, and rarely did 

investigate the influence of catchment, river or project characteristics. In this study, we 

compiled a harmonized dataset on the effects of hydromorphological river restoration 

measures on biota based on a standardized monitoring design to minimize scatter due to 

methodological differences. A broad range of response variables was recorded to draw 

conclusions on the effect of restoration on biota in general, including habitat composition 

in the river and its floodplain, three aquatic and two floodplain-inhabiting organism 

groups, as well as food web composition and aquatic land interactions as reflected by 

stable isotopes. Additional data on factors potentially constraining or enhancing the effect 

of restoration were compiled to identify conditions which favour restoration success. The 

main focus was dedicated to investigate the effect of restoration extent (as indicated by 

restored section length and restoration intensity). 

Ten pairs of one large and a similar but small restoration project were investigated to 

address the role of restoration extent for river restoration effects. The restoration effect 

was quantified by comparing each of the 20 restored river sections to a nearby non-

restored, i.e. still degraded section. The large restoration projects were representing 

good-practice examples in different European regions either targeting medium-sized 

lowland rivers or medium-sized mountain rivers. Many of the mountain rivers 

investigated were restored by removing bed and bank fixation, flattening river banks, 

and partly widening the cross-section (referred to as widening in the following). In the 

lowland rivers, remeandering and reconnecting oxbows were the most prominent 

measures besides increasing groundwater levels for restoring wetlands. Moreover, 

instream measures like large wood and boulder placement have been applied.  

We found a significant effect on the number of ground beetle species and on richness and 

diversity of macrophytes, a moderate effect on fish, and a low effect on 

macroinvertebrates and floodplain vegetation. This is consistent with the findings of other 

studies on single organism groups, except for floodplain vegetation, which usually 

benefits from restoration but restoration effects were constrained by agricultural land use 

in our study. Since the effect of restoration was generally higher on terrestrial and semi-

aquatic organism groups, we recommend that they are considered in the monitoring and 

assessment of river restoration projects. 

In general, the effect of restoration on community structure, traits, and functional 

indicators was more pronounced compared to the effects on species number and 

diversity. These changes in community structure indicate specific functional changes 

caused by river restoration and can be used to increase our understanding how 

restoration measures affect aquatic ecosystems, investigate causal relationships, and 

identify sustainable, (cost-) effective restoration measures. Therefore, we recommend 

that future restoration projects and monitoring studies should focus more on functional 

aspects (e.g. species traits, community structure) to investigate how river restoration 

affects river hydromorphology and biota, which would offer a great opportunity to make 

fundamental advances in restoration ecology and management.  

The factors potentially constraining or enhancing the effect of restoration were partly 

correlated, which made it difficult to infer causal relationships (e.g. most old projects 
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were located in gravel-bed rivers where mainly widening was the main restoration 

measure applied, and catchment land use was less intensive). Nevertheless, it was 

possible to draw some first conclusions on the conditions favouring restoration success: 

It has been widely stated that large-scale pressures like water quality and fine 

sediment loads might constrain the effect of restoration. However, in this study, 

catchment land use did only affect restoration success for floodplain vegetation, and 

restoration effect might have been rather constrained by the limited species pool 

available for re-colonization and dispersal since the organism groups which did benefit 

most from restoration also have relatively high dispersal abilities (ground beetles, 

macrophytes). This topic clearly merits further investigation since a limited re-

colonization potential would need a completely different restoration strategy compared to 

reach-scale habitat improvements. 

Restoration extent (length of restored section, restoration intensity) was not the main 

factor determining restoration effects. Most probably, the restoration projects 

investigated were simply too small to benefit from possible positive effects of restoration 

extent, which is also supported by other recent studies. Furthermore, project age (time 

between implementation of the measures and monitoring) only had a positive effect on 

the aquatic habitat conditions but not on any of the organism groups investigated, 

possibly due to the young age of most projects investigated. In contrast, project age was 

identified as one of the most important variables affecting restoration success in the 

REFORM deliverable D 4.2, stressing the need to further investigate the effect of 

restoration over time in future studies. 

Widening was applied in 11 of the projects investigated and had a significantly larger 

effect on hydromorphology and several organism groups (e.g. ground beetles, 

macrophytes) compared to other measures (among others instream measures), which is 

consistent with the findings of the REFORM deliverable D 4.2, and the widely endorsed 

assumption that restoring geomorphological processes has a higher effect compared to 

other measures. Since widening includes a set of measures, it was not possible to 

investigate the contribution of single measures. Since the positive effect on ground 

beetles was mainly due to the creation of open pioneer habitats covered by sparse woody 

vegetation, flattening river banks might already suffice but this has to be further 

investigated. Moreover, these results do not question the use of instream measures 

since transferability is limited due to the relatively low number of instream projects 

investigated in this study, and results of several other studies showing that instream 

measures generally have a positive effect on different aquatic organism groups. 

The results indicated that future restoration projects should aim at increasing and 

monitoring habitat diversity at spatial scales which are ecologically relevant for the 

targeted organism groups. Although we found enhanced macro- and mesohabitats, which 

often is visually appealing, the measures often failed at increasing microhabitat diversity, 

which in turn was correlated with the effect of restoration on macroinvertebrates. 

Furthermore, it is not necessarily most important to increase the mere number of habitat 

types (e.g. habitat diversity) but to restore specific habitats which are of special 

importance. For ground beetles, the positive effect of widening was mainly due to the 

strong relationship between ground beetle richness and a specific habitat type: the open 

pioneer stage covered by sparse woody vegetation, but not to the mere number of 

habitat types. 
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The following more specific conclusions can be drawn for the single organism groups and 

river hydromorphology: 

Overall, restoration increased habitat diversity through changes in channel morphology. 

The dominance of the main channel was significantly reduced, while other channel 

features such as islands, banks and bars became more frequent. The effect of restoration 

on hydromorphology was not higher in larger restoration projects compared to smaller 

projects. The effect of restoration was high for macro- and mesohabitat divsersity but 

low for microscale substrate composition. Key indicators for identifying restoration 

success should include parameters at larger spatial scales such as channel adjustments. 

There is a need to develop terrestrial parameters to assess the lateral dimension of 

restoration. 

In line with other restoration studies no effects of restoration on macroinvertebrates 

were detected. However, macroinvertebrate richness and diversity was correlated with 

microhabitat diversity. While restoration projects like widening are visually appealing and 

increase macro- and mesohabitat diversity, they apparently rarely increase microhabitat 

diversity relevant for macroinvertebrates and species diversity. 

Fish respond in a consistent way to hydromorphological restoration measures by an 

increase of rheophilic and a decrease of eurytopic fish. The restoration effect increases 

with habitat quality and length of restored river sections. Future restoration should focus 

on more dynamic, self-sustaining habitat improvements extending over several 

kilometres. 

Restoration had an overall positive effect on richness and diversity of specific 

macrophytes (so-called helophytes, emergent plants rooting under water or in wetted 

soils) but not on emergent and submerged aquatic plants (hydrophytes). Restoration 

effects were especially high in widening projects located in mountain rivers. 

An increase in total ground beetles species richness and richness of habitat specialists 

could be achieved primarily by creating pioneer patches, for example by river widening, 

which result in more open banks. Suitable restoration measures should aim on a strong 

lateral connection between the river and its floodplain. Further research should focus on 

determining optimal conditions of such pioneer habitats. 

Responses of floodplain vegetation were related to changes in trait composition, while 

general effects on diversity were limited (small restoration projects) or absent (large 

restoration projects). Few general responses to restoration could be detected because 

species and trait composition and plant diversity varied substantially between the 

European regions. 

For stable isotopes results supported our hypotheses that trophic length (indicated by 

Δ15N) as well as diversity of assimilated food sources (indicated by Δ13C) increase with 

restoration. Δ13C was significantly larger in large restoration projects compared to the 

corresponding degraded sections, suggesting that macroinvertebrates were feeding from 

more diverse sources. The results underlined the necessity to limit comparisons to 

sections within a region, as large-scale differences possibly masked the effects of 

restoration.  

 



                 D 4.3 Effects of large- and small-scale river restoration 

   

vi  

Acknowledgements 

This document has been internally reviewed by Tom Buijse (Deltares), Ángel García 

Cantón (CEDEX) and Fernando Magdaleno Mas (CEDEX). 

REFORM receives funding from the European Union’s Seventh Programme for research, 

technological development and demonstration under Grant Agreement No. 282656.  



                 D 4.3 Effects of large- and small-scale river restoration 

   

vii  

Table of Contents 

 

1. INTRODUCTION 10 

1.1 BACKGROUND 10 

1.2 GENERAL STUDY DESIGN 12 

1.3 REFERENCES 16 

2. METHODS 19 

2.1 SELECTION OF CASE STUDY RIVERS AND SECTIONS 19 

2.2 CONCEPTUAL LOCATIONS AND DIMENSION OF SAMPLING AREAS 19 

2.3 HYDROMORPHOLOGY 20 

2.4 MACROINVERTEBRATES 26 

2.5 FISH 27 

2.6 MACROPHYTES 28 

2.7 GROUND BEETLES 29 

2.8 FLOODPLAIN VEGETATION 31 

2.9 STABLE ISOTOPES (N AND C) 34 

2.10 DATABASE 35 

2.11 REFERENCES 38 

3. OVERVIEW ANALYSIS 41 

3.1 INTRODUCTION 41 

3.2 MATERIAL AND METHODS 43 

3.3 RESULTS 44 

3.4 DISCUSSION 46 

3.5 CONCLUSION 49 

3.6 REFERENCES 49 

4. HYDROMORPHOLOGY 54 

4.1 INTRODUCTION 54 

4.2 METHODS 56 

4.3 RESULTS 61 

4.4 DISCUSSION 72 

4.1 REFERENCES 75 



                 D 4.3 Effects of large- and small-scale river restoration 

   

viii  

5. MACROINVERTEBRATES 80 

5.1 INTRODUCTION 80 

5.2 METHODS 80 

5.3 RESULTS 85 

5.4 DISCUSSION 90 

5.5 REFERENCES 91 

6. FISH 93 

6.1 INTRODUCTION 93 

6.2 METHODS 94 

6.3 RESULTS 96 

6.4 DISCUSSION 101 

6.5 CONCLUSIONS 103 

6.6 REFERENCES 103 

7. MACROPHYTES 105 

7.1 INTRODUCTION 105 

7.2 METHODS 105 

7.3 RESULTS 106 

7.4 DISCUSSION 111 

7.5 REFERENCES 112 

8. GROUND BEETLES 113 

8.1 INTRODUCTION 113 

8.2 METHODS 115 

8.3 RESULTS 118 

8.4 DISCUSSION 124 

8.5 CONCLUSIONS 126 

8.6 REFERENCES 127 

9. FLOODPLAIN VEGETATION 130 

9.1 INTRODUCTION 130 

9.2 MATERIALS AND METHODS 131 

9.3 RESULTS 134 

9.4 DISCUSSION 140 

9.5 CONCLUSIONS 143 



                 D 4.3 Effects of large- and small-scale river restoration 

   

ix  

9.6 REFERENCES 144 

10. STABLE ISOTOPES 147 

10.1 INTRODUCTION 147 

10.2 MATERIAL AND METHODS 148 

10.3 RESULTS 149 

10.4 DISCUSSION 154 

10.5 OUTLOOK 155 

10.6 REFERENCES 156 

11. SUMMARY AND CONCLUSIONS 158 

11.1 STUDY OBJECTIVES 158 

11.2 SUMMARY OF RESULTS 159 

11.3 GENERAL DISCUSSION AND CONCLUSIONS 168 

11.4 REFERENCES 173 

12. ANNEX 175 

12.1 ANNEX A: LIST OF VARIABLES COMPILED IN THE DATABASE 175 

12.2 ANNEX B: DESCRIPTION OF RESTORATION PROJECTS AND STUDY SECTIONS 200 

12.3 ANNEX C: HYDROMORPHOLOGICAL EFFECTS - DETAILED RESULTS 222 

12.4 ANNEX D: FISH DATA 239 

 

 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 10 of 240  

 

1. Introduction 

1.1 Background 

Over the last decades, enhancing the hydromorphological and biological state of 

degraded rivers has become a widely accepted ecological and social objective in 

developed nations (Shields et al. 2003, Bernhardt et al. 2005). An increasing number of 

rivers have been restored in the past few decades but only a small number of these 

projects have been monitored, and hence, the knowledge on the effect of river 

restoration projects is limited (Bash and Ryan 2002, Bernhardt et al. 2005). 

The few studies investigating the effect of restoration on hydromorphology and biota 

reported contrasting results. Several studies showed that the ecological effect of river 

restoration projects has been small even if local river morphology and habitat conditions 

have substantially improved (Lepori et al. 2005, Jähnig et al. 2010, Palmer et al. 2010). 

In contrast, other studies found a significant positive effect of river restoration on specific 

organism groups (Lorenz et al. 2012, Schmutz et al. 2014). The few narrative reviews 

that compiled information on a larger number of restoration projects also found highly 

variable restoration effects (Roni et al. 2002, 2008). Moreover, two recent quantitative 

meta-analysis showed that restoration generally has a positive effect on the diversity and 

abundance of different aquatic organism groups (fish, macroinvertebrates, macrophytes) 

but variability of restoration effect was high and a substantial part of the projects showed 

no or even a negative effect (Miller et al. 2010, Kail and Angelopoulos 2014). The high 

variability is probably partly due to real differences in the effectiveness of the restoration 

measures applied, as well as other catchment, river, and project characteristics which 

either enhance or constrain restoration effect. For example, Kail and Angelopoulos 

(2014) reported that nearly half of the variance in restoration effect was due to 

differences in characteristics like project age, river size, catchment land use, organism 

groups, river type, and the biological metric considered as well as the restoration 

measures applied. The substantial unexplained variance might be partly due to missing 

information on factors enhancing or constraining restoration effect (Roni et al. 2008) but 

also caused by the large methodological differences in respect to monitoring design, field 

sampling, and data analysis, which limits comparability of results. Therefore, scatter in 

the dataset could possibly substantially be reduced and the prediction of restoration 

effect could be enhanced by using a standardized monitoring and sampling design as well 

as data analysis, resulting in a harmonized dataset. 

Besides the limitations due to the high variability, it is presently difficult to draw general 

conclusions on the effect of restoration on biota since most studies were restricted to one 

or few organism groups, mainly to fish and invertebrates (Lepori et al. 2005, Jähnig et al. 

2010, Palmer et al. 2010, Schmutz et al. 2014, Miller et al. 2010). There are some few 

studies on the effect of restoration on macrophytes (e.g. Lorenz et al. 2012) and ground 

beetles (Januschke et al. 2011), but comparative studies on several organism groups are 

rare (Jähnig et al. 2009, Januschke et al. 2011, Haase et al. 2013, Kail and Angelopoulos 

2014), and studies comprising aquatic, semi-terrestrial, and terrestrial biota are virtually 

missing (but see Jähnig et al. 2009, Januschke et al. 2011). 

While most of the studies mentioned above quantified the effect of different restoration 

measures on different organism groups, only few studies tried to identify catchment, 
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river or project characteristics which either constrain or enhance restoration effect and to 

identify conditions which favour restoration success (Miller et al. 2010, Kail and 

Angelopoulos 2014). A variety of reasons for limited biotic effects of morphological 

restoration measures has been suggested, including (i) stressors acting at larger scales 

such as water quality, those associated with intensive landuse and hydrological 

alterations in the catchment (Palmer et al. 2010, Lorenz and Feld 2013; Sundermann et 

al. 2013), (ii) the inadequate restoration of hydromorphological processes (Jähnig et al. 

2009), (iii) minor changes in relevant microhabitats (Lepori et al. 2005), and a limited 

re-colonization potential due to a lack of source populations and a large number of 

migration barriers (Stoll et al. 2014, Tonkin et al. 2014). Several authors suggest a 

hierarchy of stressors, with water quality parameters, in particular oxygen depletion 

caused by organic pollution, acting as an overarching stressor which may mask the 

effects of habitat enhancement (Sundermann et al. 2011, Wahl et al. 2013). In principal, 

other water quality parameters, such as pesticides, can act similarly (Malaj 2014). 

Moreover, there is overwhelming evidence that stressors acting at larger spatial scales 

(catchment, subcatchment, sections of several kilometres in length) strongly determine 

aquatic assemblage composition (Kail and Hering 2009, Lorenz & Feld 2013, Marzin et al. 

2013, Verdonschot et al. 2013). The pathways are manifold (Feld et al. 2011) and 

include, in addition to water quality, alteration of water temperature (Kiffney et al. 2003) 

and fine sediment entry (Teufl et al. 2013). All these can significantly influence 

assemblage composition in a restored section and thus limit restoration effects.  

Many of these parameters, which potentially limit the effects of habitats enhancement, 

may be mitigated in large restoration projects where restored sections are relatively long 

and/or restoration actions have been intense. Accordingly, restoration effect possibly 

depends on restoration extent. Hydromorphological processes are scale dependent, 

including the formation of meanders and braided patters and of riffle-pool sequences 

(Richards et al. 2002). Similarly, water quality parameters may differ between short and 

long restored river sections: the effect of riparian forests on water temperature is 

depending on the length of a shaded river section (Kiffney et al. 2003); self-purification 

depends on the length of a section with near-natural morphology. Assuming similar 

large-scale pressures, short restored sections are likely to be more strongly impacted by 

stressors acting at the catchment scale, e.g. fine sediment entry. Viable populations of 

aquatic organisms require a minimum area of suited habitats. Finally, the effect of 

natural channel features like large wood or boulders on habitat conditions and biota 

largely depends on the amount present (Fausch and Northcote 1992). A strong 

correlation between the restoration extent and the biological effects can therefore be 

assumed.  

In this study we compiled a harmonized dataset on the effects of hydromorphological 

river restoration measures on biota based on a standardized monitoring and sampling 

design to minimize scatter due to methodological differences. A broad range of response 

variables was investigated to draw conclusions on the effect of restoration on biota in 

general, including habitat composition in the river and its floodplain, three aquatic 

organism groups, two floodplain-inhabiting organism groups, as well as food web 

composition and aquatic land interactions as reflected by stable isotopes. Additional data 

on factors potentially constraining or enhancing the effect of restoration were compiled to 

identify conditions which favour restoration success and we designed the study to 

especially investigate the effect of restoration extent.   
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1.2 General study design 

Restored sections and study reaches 

We investigated ten pairs of one large and a similar but small restoration project to 

address the role of restoration extent for river restoration effects. The restoration effect 

was quantified by comparing each restored river section to a nearby non-restored, i.e. 

still degraded section (space for time substitution, Figure 1-1).  

 

Figure 1-1: General study design of the paired restored sections. 

The large restoration projects were representing good-practice examples in Northern 

Eastern and Central Europe either targeting medium-sized lowland rivers or medium-

sized mountain rivers and were located in Finland, Sweden, Denmark, the Netherlands, 

Germany (lowlands), Germany (mountains), Poland, the Czech Republic, Austria and 

Switzerland (Figure 1-2). One study reach was selected in the downstream part of each 

of these large restoration projects R1 to consider potential mitigating effects of 

restoration extent like the reduction of fine sediment loads in the downstream part 

caused by deposition of fines in the upstream part. A second study section still degraded 

(D1) was selected some few hundred meters upstream of the restored section. For each 

of the ten large restoration projects, a second restoration project was selected in a river 

of comparable size and character. In contrast to the R1-sections, these restored sections 

were shorter and/or restoration has been performed with less intensity. Similarly to the 

large restoration projects, one study reach was selected in the small restoration projects 

(R2) and one in a degraded section some few hundred meters upstream (D2). Virtually 

each of the 40 reaches was sampled for all of the response variables: hydromorphological 

variables, three aquatic organism groups (fish, benthic invertebrates, aquatic 

macrophytes), two floodplain-inhabiting organism groups (ground beetles and floodplain 

vegetation) and stable isotopes. 

While restoration projects in a given region were selected to differ just in restoration 

intensity and were comparable in terms of river size, catchment land use and altitude, 

there was nevertheless inevitable variation between regions. First, we tested if there 

were general differences in restoration effect between the two groups of large and small 

restoration projects (despite regional differences). Second, to account for these regional 

differences, we limited direct comparisons of large and small restoration projects to the 

corresponding pairs and their degraded control sections (R1/D1 compared to R2/D2 

following Kenobi et al. 1980), i.e. we mainly used the pairwise difference of 

corresponding large and small projects (R1 and R2). 
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Figure 1-2: Location of the large (R1) and small (R2) restoration projects. Abbreviations 

consist of the country code, restoration extent code, and river name. 

 

Quantifying restoration effect 

The effect of restoration on the different response variables was measured using different 

variables and in different units. For example, variables used range from ordinal scaled 

assessment scores for the hydromorphological state to different biological metrics used 

to assess the biological state (e.g. richness, diversity, number of sensitive taxa), and 

different units were used to quantify species abundance (e.g. number of fish individuals, 

abundance classes of invertebrates). Therefore, it was necessary to standardize the 
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different state variables and units using a single effect size to allow for meaningful 

comparisons of the restoration effect. 

We used two different approaches to quantify restoration effect, and a total of three 

different effect sizes:  

First, for a first overview analysis (Chapter 3), we quantified the difference between the 

restored (R) and corresponding degraded control reaches (D) for each response variable 

using the Bray-Curtis dissimilarity index, which ranges from 0 to 1 and quantifies the 

dissimilarity between the restored reaches. The similarity index is lowest (0) if the same 

objects occur in both sections having the same value (e.g. all species occur in both 

sections with the same abundance, all channel features occur in the same number), it is 

highest (1) if the sections have no objects in common (e.g. sections do not share any 

species). Assuming that the less similar the restored and degraded sections are, the 

higher the effect of restoration, dissimilarity between sections was used as an effect size, 

i.e. a high Bray-Curtis dissimilarity index is indicating a high effect size.  

Second, for the more detailed analysis of each response variable (Chapter 4 to 10), we 

quantified restoration effect on different variables (e.g. species diversity or abundance, 

number of microhabitats) using two different effect sizes: 

(i) Absolute values (subtracting values of the degraded sections from the restored 

sections R - D), with positive values denoting an increase and negative values a decrease 

of the variable. This effect size is easy to interpret since it gives the absolute change but 

variables measured in different units or different variables cannot be compared. 

(ii) The response ratio of Osenberg et al. (1997): 

      (
 ̅ 

 ̅ 

) 

with  ̅  and  ̅  being the means of the treatment (restored) and control (degraded), 

values > 0 denoting a positive effect (e.g. increase in species diversity), and negative 

values a negative effect. According to Osenberg et al. (1997), an exponential model is 

assumed by using a logarithmic function, i.e. a fast increase of the variables in the first 

years and a smaller increase in the following years until equilibrium is reached. The 

response ratio is dimensionless (standardized) since  ̅  is divided by  ̅  and hence, the 

effect of restoration on different variables describing the hydromorphological, biological, 

and isotope conditions can be compared. 

 

Hypothesis on restoration effect and the role of restored section length 

Based on the results of previous studies and the potential constraining effect of large 

scale stressors (see Chapter 1.1), it was hypothesized that restoration effect differs 

between the response variables investigated (Figure 1-3, y-axis). We expected that 

floodplain-related variables (e.g. floodplain vegetation, ground beetles, floodplain and 

riparian habitats) respond more strongly, and variables related to the river itself (e.g. 

fish, benthic invertebrates, substrate diversity) respond weakly, as they are more 

strongly influenced by catchment-scale stressors, e.g. through water quality. 
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Figure 1-3: Conceptual diagram reflecting the magnitude of restoration effect (y axis) 

and the additional effect of restoration extent (x axis) for the response variables 

investigated. 

 

In terms of variables potentially constraining or enhancing restoration effect, we focused 

on the mitigating effect of restoration extent for the reasons outlined in Chapter 1.1, a 

strong correlation between the restoration extent (e.g. restored section length, 

restoration intensity) and the restoration effects were assumed. However, the effect of 

restoration extent may differ between individual organism groups, hydromorphological 

and functional response variables. Primarily, strong effects can be assumed for organism 

groups which are most impacted by large-scale stressors (e.g. benthic invertebrates), 

which depend on hydromorphological processes requiring a certain section length 

(several instream habitats) and have a larger home range (fish). In more detail, we 

expected the following effects of restoration extent (Figure 1-3, x-axis):  

 the weakest effect of restoration extent was expected for floodplain biota and 

habitats, as strong effects of restoration have been documented already for small 

restoration projects; 

 a stronger effect of restoration extent was expected for land-water interactions, 

which depends on floodplain habitats, and for aquatic macrophytes, for which 

restoration effects have been documented for small restoration projects, but 

which are generally influenced by large-scale effects such as water quality;  

 an even stronger effect of restoration extent was expected for fish as large 

organisms, which require a certain restored section length for sufficient population 

size;  

 followed by aquatic microhabitats and flow patterns, which are generated by the 

restoration measure per se but are jeopardized by catchment influences, e.g. fine 

sediment entry, which will decrease with restoration extent; 

Differences in effects between large and small restoration projects 
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 the strongest effect of restoration extent was expected for benthic invertebrates, 

which strongly depend on factors acting at larger scales; and for aquatic food web 

interactions, which depend on both aquatic habitats and benthic invertebrates.  

In summary, we expected that restoration extent has a minor effect on response 

variables which strongly react to restoration (such as floodplain habitats), while it will 

boost the effect of restoration on variables generally responding poorly to restoration 

(Figure 1-3).  
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2. Methods 

2.1 Selection of case study rivers and sections 

The selection of case study restoration projects and study sections was directed to cover 

two main river types, gravel-bed mountain rivers and sand-bed lowland rivers. The 

restoration projects comprised a wide range of hydromorphological restoration measures.  

Basically, rivers and sections which met those selection criteria have been nominated by 

the project partners. An additional criterion was the availability of already existing 

monitoring data of these rivers and their catchments as well as the accessibility of the 

sections in the field. For the final selection also an even geographical distribution has 

been considered. 

A more detailed description of the restoration projects and the applied measures as well 

as information on the catchment, river and project characteristics of the study sections 

are given in Annex B. 

2.2 Conceptual locations and dimension of sampling areas 

Almost all degraded sections were located upstream of the corresponding restored 

sections and with a sufficient distance to prevent mutual interferences. Within each 

degraded and restored section a representative sampling/mapping reach was selected. 

The restored sampling reach was located in the downstream part of the restored section 

to consider potential mitigating effects of restoration extent like the reduction of fine 

sediment loads in the downstream part caused by deposition of fines in the upstream 

part. 

The lengths of sampling reaches depended on wetted channel width and the response 

variable (Table 2-1). Sampling reaches for recording hydromorphological transects and 

sampling of ground beetles, floodplain vegetation and stable isotopes were 200 or 500 m 

in length. For macroinvertebrates and macrophytes, the length of sample reaches was 

200 m irrespective of wetted channel width. 

Table 2-1: Length of sampling reaches (m) (wcw = wetted channel width). 

 
Reach length (m)  
for wcw < 50 m 

Reach length (m) 

for wcw > 50 m 

Hymo - survey 4x100(200)* 4x500 

Hymo - transect method 200 500 

Macroinvertebrates 200 200 

Fish 10 to 20 times wcw (min. 100 m) 10 to 20 times wcw  

Macrophytes 200 200 

Ground beetles 200 500 

Stabile isotopes 200 500 

Floodplain vegetation 200 500 

*wcw<20m – length of sampling reach is 100m; wcw=20-50m – length of sampling reach is 200m, Hymo = 

hydromorphological 
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The lateral boundaries of sampling areas and sampling seasons also differed between the 

response variables (Table 2-2). 

Table 2-2: Sampling area (lateral boundaries) 

 
Recording/Sampling area 

Recording/Sampling 

season 

Hymo - survey 4x wetted channel width Low flow in summer 

Hymo - transect 

method: Channel 

features 

The whole flood-prone area including aquatic, 

transient and terrestrial parts; in restored 

sections terrestrial area comprises the 

bankfull discharge area, in degraded sections 

the area of high-water level (debris lines); 

maximum width of 200m 

Low flow in summer 

Hymo - transect 

method: 

Microhabitats 

Aquatic area Low flow in summer 

Macroinvertebrates Aquatic area without oxbow lakes 
Low flow in early 

summer (June to July) 

Fish Aquatic area 
Late summer/early 

autumn 

Macrophytes Aquatic area  

Maximum growth in low 

flow conditions (mid-

summer) 

Ground beetles 
Strip of the river bank with a maximum width 

of 10 m 

Late June 

(Mediterranean sites) to 

early August 

(Scandinavian sites) 

Floodplain vegetation 

The whole flood-prone area including aquatic, 

transient and terrestrial parts; in restored 

sections terrestrial area comprises the 

bankfull area, in degraded sections the area of 

high-water level (debris lines); maximum 

width of 200m 

Maximum growth in low 

flow conditions 

Stable isotopes 

Aquatic, transient and terrestrial area; 

terrestrial area comprises the whole flood-

prone area + a strip across the edges of 

embankment for sampling of non-riparian 

beetles 

Maximum of biomass 

2.3 Hydromorphology 

The hydromorphological conditions of the restored and degraded sections were assessed 

by (1) mapping of the general hydromorphological state of the river and its surrounding 

floodplain area using a CEN compliant hydromorphological survey method and (2) more 

detailed mapping of the meso- and microhabitats, i.e. habitat composition of the river 

and the floodplain along transects. 

 

CEN compliant hydromorphological survey method 

For the hydromorphological field assessment a standard Austrian survey method 

(NOEMORPH - Hydromorphological Mapping of Selected Running Waters in Lower Austria; 

freiland umweltconsulting) has been selected and further developed to meet the 
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requirements of the WFD and to be CEN compliant. We chose this method instead of the 

CEN norm itself as it is principally similar to several other national survey methods 

applied by default in Europe (see Rinaldi et al, 2013, Reform Del.1.1; Belletti et al., 

2014). 

Following the review of Belletti et al. (2014) these methods can be categorized as 

surveys for characterizing and evaluating physical river conditions. Overall parameters 

such as channel geometry or flow dynamics help to identify and assess main 

hydromorphological conditions of the river. These survey parameters are described and 

finally evaluated. Basically, the underlying evaluation follows the concept of reference 

conditions (WFD 2000). Applying this methodological approach the deviation of the 

current status of the river from the “type-specific status” - the target state that is 

represented by “reference conditions” - is analysed. 

For the field assessment, the hydromorphological survey was conducted in four single 

reaches in the degraded and restored section, respectively (Figure 2-1), each reach 100, 

200 or 500 m in length, depending on the wetted channel width (see Table 2-1). 

Hydromorphology of these four reaches has been characterised as well as assessed and 

evaluated separately. In restored sections with a length larger than the survey section 

(consisting of four reaches each 100, 200, or 500m in length), the survey section was 

located in the most downstream part of the restored section. 

  

Figure 2-1: Delineation of survey sections and reaches for the field assessment in the 

degraded (left) and restored (right) sections.  

 

All descriptive attributes listed in Table 2-3 were mapped and used to assess all 

evaluation parameters within five main survey parameters on a five-point ordinal scale 

ranging from 1 (undisturbed, hymo status “high”) to 5 (totally disturbed, hymo status 

“bad”). Three of the main parameters describe the conditions in the active channel 

(channel geometry and flow characteristics, riverbed, water – land transition zone) 

whereas two main parameters are used to assess the riparian and floodplain area and 

hence, are recorded separately for the left and right side of the river (bank and riparian 

structures, vegetation of the adjacent area). In addition, dams and weirs, impoundments 

and water abstraction have been recorded, as well as basic information with regard to 

the geomorphological character, the vegetational zone and the morphological river type 

(Muhar et al. 2000, Jungwirth et al. 2003) of the river reach. To finally assess the 
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hydromorphological status of each reach, we calculated the mean of all five main 

parameters. 

Table 2-3: Descriptive attributes and evaluation parameters for the main 

hydromorphological survey parameters. 

Main survey 
parameter 

Descriptive Attributes  Evaluation 
parameter  

Channel 
geometry and 
flow 
characteristics 

Current: 
mean flow velocity in m/s 

Flow character:  
slow, uniform (homogenous anthropogenically caused), 
swirled/heterogeneous, turbulent  

Channel 

Geometry  

Flow Pattern  

River Dynamics 

Riverbed Depth: 
maximum and minimum  

Depth variability: 

high, moderate, low, none 

Riverbed stabilization: 
absent, present covered by substrate, continuous stabilization 

structures, local stabilization measures 

Type of riverbed stabilization: 
concrete, asphalt, pavement, pavement grouted, cobbles 

Choriotopes: 
abiotic (ÖNORM 1997), biotic 

Substrate 

characteristics 

Riverbed relief 

Hyporheic 

interstitial 

Water – land 
transition 
zone 

Width variability: 

high, moderate, low, none 

Shoreline Stabilization: 

absent, single, partly, continuous 

Stabilization type: 

biological engineering measures, combined, pilotage, riprap, 
stone pitching facing, stone pitching tightly packed, concrete 

Important woody debris accumulation(s) 

Important bedload accumulation(s): 

gravel banks, sand banks, silt banks 

Connectivity 

Structures 

River bank / 

riparian zone 

Cross-sections of longitudinal course: 

variable, uniform; trapeze, double-trapeze, arc 

Embankment 
Bank gradient: 
vertical, steep (>30° - 1:1,6 and steeper), moderate (10-30° 
- 1:5 to 1:1,6), plain (<10° - 1:5 and less) 

Bank protection:  
absent, single, partly, continuous 

Dimension of the bank protection: < 1/3 of the bank, 1/3 

of the bank, 3/4 of the bank, up to top edge of the bank 

Type of bank protection: biological engineering measures, 
combined, pilotage, riprap, stone pitching facing, stone 
pitching tightly packed, concrete, grass 

Vegetation coverage of the river bank: 
+/- 100%, >50%, <50%, absent 

Bank 

characteristics 

Species 

composition of 

vegetation 
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Table continued 

Main survey 

parameter 

Descriptive Attributes  Evaluation 
parameter  

River bank / 
riparian zone 

Vegetation coverage of the river bank: 
+/- 100%, >50%, <50%, absent 

Canopy/Shadowing of the water body: 
complete, predominant, partly, absent 

Vegetation Types: 

vegetation types are assigned to one of four frequency 

classes for banks, vegetation types see below (vegetation of 
the adjacent area) 

Riparian 

vegetation 
cover and age 

Vegetation of 
the adjacent 
area 

Total width of woody riparian vegetation zone:  
>15 m, multi-row 5-15 m, single-row 2-5 m, single-row 
interrupted, isolated woods/absent 

Coverage of riparian woods:  
+/- 100 %, >50 %, <50 %, absent 

Vegetation Types: 

(vegetation types are assigned to one of four frequency 
classes for the adjacent area) 

herbaceous pioneer vegetation, cane brake, tall herb fringe, 
nitrophilous fringe, invasive herbaceous species, woody 
pioneer plants, soft wood floodplain forest, hard wood 
floodplain forest, wetlands/bogs 

pasture, fallow land, grassland extensive, grassland intensive, 

lawn, field, deciduous forest, mixed forest, coniferous forest, 

invasive woody species, no vegetation/ sealing 

Buffer zone 
total 

Species 

composition of 

vegetation of 

surroundings 

Vegetation 

cover and age 

of surroundings 

 

Assessment of hydromorphological micro-/mesohabitats (transect method) 

Within each restored and degraded section, we selected a sampling reach, 200 or 500 m 

in length depending on the wetted channel width (see Table 2-1).  

First, common parameters were recorded in each sampling reach by counting the number 

of the following morphological characteristics: 

- unvegetated bars and islands, 

- bars and islands with herbaceous and with woody vegetation, 

- woody debris and deadwood trunks, 

- standing water bodies and sidearms. 

Second, we divided each sampling reach into 10 transects spanning the flood-prone area 

from one side to the other comprising aquatic, transient and terrestrial zones. In restored 

sections it was the area of bankfull discharge, in degraded sections the area of high-

water level. The bankfull width and height were measured for each transect. The transect 

method for recording hydromorphology at meso- and microscale comprised two steps:  

1. recording of channel features in the flood-prone area,  

2. recording of aquatic microhabitats. 

Along each transect, the lengths of channel features, classified according to Jähnig et al. 

(2008) and Januschke et al. (2009), were measured (Table 2-4).  
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Table 2-4: Channel features (modified after Jähnig et al. 2008 and Januschke et al., 

2009). 

 

Channel feature Description 

A
q

u
at

ic
 

Main channel Hydrological dynamic water body, most important runoff channel 

Secondary channel 
Hydrological dynamic water body, connected with the main channel at 

both ends, less water runoff 

Connected sidearm 
Water bodies lacking unidirectional current, connected only at the 

downstream or upstream end 

Disconnected sidearm No connectivity with the main channel 

Permanent standing water body 
On the floodplains, fed by high water levels and groundwater, no signs of 

drying 

Temporally standing water body 
On the floodplains, fed by high water levels, dries out quite shortly, 

puddle-like 

Tr
an

si
e

n
t 

Bank with woody vegetation Woody aquatic-terrestrial transient zone with an inclination <30° 

Bank with herbaceous vegetation Herbaceous aquatic-terrestrial transient zone with an inclination <30° 

Side bar 
Unvegetated bar close-by the shoreline either at the floodplain or at an 

island 

Midchannel bar Unvegetated bar in the middle of main or secondary channel 

Te
rr

e
st

ri
al

 

Island with woody vegetation Large woody bar, separating main and secondary channel(s) 

Island with herbaceous vegetation Large herbaceous bar, separating main and secondary channel(s) 

Artificial embankment  
Artificially created area e.g. with trapezoidal or rectangular profile, often 

built of blocks as bank fixation 

Embankment with woody vegetation Woody area with an inclination >30°, confines bankfull discharge area 

Embankment with herbaceous vegetation Herbaceous area with an inclination >30°, confines bankfull discharge area 

Steep (unvegetated) embankment 
Steep brim at riparian area with an inclination >50°; if inclination is 90°, it 

is mapped with length=0 

Floodplain area Within bankfull discharge area, area prone to flooding 

 

Within each channel feature we recorded the dominant substrate using the classification 

according to Hering et al. (2003) (Table 2-5). Transects were marked in an aerial picture 

and geographic coordinates (longitude, latitude, WGS84) of transect 1 and 10 were 

recorded in each sampling reach. Furthermore, we took pictures of at least transect 1, 5 

and 10. 
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Table 2-5: Substrates for instream microhabitat recording according to multi-habitat 

sampling protocol (Hering et al. 2003); substrates marked green are also used for 

recording of channel features. 

Substrate 

name 
Description Type 

Grain 

size 

(mm) 

Mega-

/Macrolithal 

Large cobbles, boulders and blocks, bedrock; coarse 

blocks, head-sized cobbles, with a variable percentages 

of cobble, gravel and sand 

mineral >200 

Mesolithal 
Fist to hand-sized cobbles with a variable percentage of 

gravel and sand 
mineral >60-200 

Microlithal 
Coarse gravel (size of a pigeon egg to child's fist) with 

variable percentages of medium to fine gravel 
mineral >20-60 

Akal Fine to medium-sized gravel mineral >2-20 

Psammal Sand mineral >0.006–2 

Argyllal Silt, loam, clay (inorganic) mineral <0.006 

Technolithal 
Artificial blocks often used as bank fixation in degraded 

sections 
mineral >200 

Xylal Tree trunks, dead wood, branches, roots biotic  

CPOM 
Deposits of coarse particulate organic matter, e.g. 

fallen leaves 
biotic  

FPOM 
Deposits of fine particulate organic matter, e.g. mud 

und sludge (organic) 
biotic  

Algae Filamentous algae, algal tufts biotic  

Submerged 

macrophytes 

Submerged macrophytes, including moss and 

Characeae 
biotic  

Emergent 

macrophytes 
Emergent macrophytes, e.g. Typha, Carex, Phragmites biotic  

LPTP Fine roots, floating riparian vegetation biotic  

 

Aquatic microhabitats were recorded at 10 survey points along each transect, with the 

distance between the survey points being (width of water surface – 20 cm)/9, since 

survey point 1 and 10 have a respective distance of 10 cm from the left/right bank. At 

each survey point we recorded water depth, dominant substrate (Table 2-5) and flow 

velocity class (Table 2-6). 

 

Table 2-6: Classification of flow velocity classes. 

Flow velocity class Description Flow velocity (m/s) 

0 stagnant 0 

1 slow <0,3 

2 rippled 0,3-0,5 

3 swirled 0,5-1 

4 turbulent >1 
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2.4 Macroinvertebrates 

The sampling of macroinvertebrates followed an EU Water Framework Directive (WFD) 

compliant sampling protocol (e.g. Haase et al. 2004). We performed the multihabitat 

sampling standardized in the AQEM and STAR projects, which reflects the proportion of 

the microhabitat types (substrate types according to Hering et al., 2003) that are present 

with > 5 % cover. Samples were taken from a 200 m long reach (Figure 2-1) in early 

summer (June to July, see Table 2-1) prior to the emergence period of many Trichoptera 

and Ephemeroptera species. 

Based on the microhabitat list given in the AQEM field protocol, the coverage of all 

microhabitats with at least 5 % cover was recorded to the nearest 5 % interval, the 

presence of other microhabitats (< 5 % cover) was indicated (by “X”) but not quantified. 

In each reach sampled, 20 individual macroinvertebrate samples (sample units) were 

taken with a hand-net/shovel sampler or a surber sampler with a mesh size of 500 μm. 

The recommended area is 25 x 25 cm each, resulting in 1.25 m2 of river bottom being 

sampled. A ‘sampling unit’ is a stationary sampling accomplished by positioning the net 

and disturbing the substrate for a distance that equals the square of the frame width 

upstream of the net (0.25 x 0.25 m). The 20 sampling units were distributed according 

to the share of microhabitats. For example, if 50 % of the channel bed sampling reach 

was covered with sand (psammal), half of the sampling units (10 out of 20) have to be 

taken on sand.  

In the field, the 20 samples of each sampling reach were pooled and preserved with 

ethanol (96 %). In the laboratory, the subsampling method based of Caton (1991) was 

used to reduce the effort required for sorting and identification, to provide an unbiased 

representation of a large sample, to provide a more accurate estimate of time 

expenditure and to reduce costs for the process of macroinvertebrate samples. 

Therefore, a minimum amount of 1/6th of the material has to be subsampled, containing 

a minimum number of 350 individuals. The subsampled individuals were sorted according 

to Haase et al. (2004). Species were identified to the lowest possible level as suggested 

by Haase et al. (2006). 

In addition to the standardized multihabitat sampling, we took samples in lentic habitats. 

In most of the case-study pairs, one of the main differences between restored and 

morphologically degraded sections is the configuration of the bank structure. Restoration 

measures created shallow and slow flowing areas at the river banks. Therefore, to 

account for this difference, we investigated the macroinvertebrate communities at the 

river margins/banks by taking 5 sample units per sampling reach with the shovel sampler 

in the lentic zones. The lentic zone is characterized by flow velocities between 0 and 

30 cm/s and a water depth between 1 and 30 cm. If there were different microhabitats 

present in the lentic zone, the 5 samples were allocated accordingly. The 5 sample units 

were pooled and subsequently sorted completely in the lab. Identification of the organism 

was done at the same level as in the standard composite sample. 
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2.5 Fish  

The sampling of fish followed an EU Water Framework Directive (WFD) compliant 

sampling protocol (EFI+ Consortium, 2009). Therefore, we used standardised electric 

fishing procedures that are precisely described in the CEN directive, “Water Analysis – 

Fishing with Electricity (EN 14011; CEN, 2003) for wadable and non-wadable rivers”. 

According to the CEN-standard, the main purpose of the standardised sampling 

procedure is to record information concerning fish composition and abundance; 

therefore, no sampling period is defined (according to CEN). However, the EFI+ approach 

recommends to sample in late summer/early autumn, except for intermittent 

Mediterranean rivers where spring samples may be more appropriate. 

Electric fishing in each study reach was conducted over a river length of 10 to 20 times 

river width, with a minimum length of 100 m to cover all habitats and fish communities 

present, and to accurately characterise the fish assemblage. However, in large and 

shallow rivers (width > 15 m, water depth < 70 cm) where electric fishing by wading can 

be used, several single sites were sampled with a total area of at least 1000 m2 and a 

total length of 10 to 20 times river width, covering all types of mesohabitats present in 

the sampling section (partial sampling method).  

As a general rule, one anode per 5 m of wetted width was used for sampling in wadable 

rivers. The operators fished upstream so that water and sediment disturbed by wading 

did not affect efficiency. Operators moved slowly, covering the habitat with a sweeping 

movement of the anodes and attempt to draw fish out of hiding. To aid effective fish 

capture in fast flowing water, the catching nets were held in the wake of the anode. Each 

anode was generally followed by one or two hand-netters (hand net: mesh size of 6 mm 

maximum) and one suitable vessel for transporting fish. 

In large rivers, water depth (> 70 cm) and habitat diversity hindered sampling of the 

entire channel area. Therefore, a partial sampling procedure was applied covering all 

types of habitats to obtain a representative sample of the site. Qualitative and semi-

quantitative information was obtained by using conventional electric fishing with hand 

held electrodes in the river margins and delimited areas of habitat. Alternatively, where 

resources exist, capture efficiency was improved by increasing the size of the effective 

electric field relative to the area being fished by increasing the number of catching 

electrodes (electric fishing boats with booms). Arrays comprising many pendant 

electrodes were mounted on booms attached to the bows of the fishing boat. The 

principal array was entirely anodic with separate provision being made for cathodes. 

Depending upon water conductivity, the current demands of multiple electrodes were 

high and large generators and powerful control boxes were needed. 

Each collected specimen was identified to species level by external morphological 

characters. The total number of specimens per species was recorded and the total length 

of all fish captured was measured. 
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2.6 Macrophytes 

Aquatic macrophytes were surveyed during the peak of the growing season by using an 

EU Water Framework Directive (WFD) compliant sampling protocol (Schaumburg et al., 

2004). 

Table 2-7: Growth forms of macrophytes. 

Growth form Definition Example 

Ceratophyllids Free-floating plants with large, finely divided 

submerged leaves 

Ceratophyllum spec., 

Utricularia spec. 

Elodeids Submerged plants with whorled stems Elodea spec., Hippuris 

vulgaris 

Equisetids Horse tails Equisetum spec. 

Haptophyts Mosses, red and green algae, lichen Fontinalis spec. 

Helodids 

(Helophytes) 

Emergent plants Typha spec., Phalaris 

arundinacea 

Hydrocharids Free-floating plants with rosettes of specialised 

floating leaves 

Hydrocharis morsus-ranae 

Isoetids Submerged plants (and filamentous algae) 

with short shoots/stems and a rosette of stiff 

radical leaves 

Isoëtes spec., Littorella 

uniflora, Cladophora spec. 

Juncids Submerged plants with simple, narrow, margin 

entire, with septate leafs (rush) 

Juncus spec. 

Lemnids Free-floating plants with small leaf-like thalli Spirodela polyrhiza, Lemna 

spec. 

Magnopotamids Submerged plants with oblong to lanceolate 

submerged leaves 

Potamogeton polygonifolius, 

Potamogeton crispus 

Myriophyllids Submerged plants with leafs at stem, feather-

like leafs 

Myriophyllum spec., 

Ranunculus spec. 

Nymphaeids Plants with longly petiolated floating leaves Nuphar lutea, Persicaria 

amphibia 

Parvopotamids Entirely submerged plants with linear to oblong 

leaves 

Zannichellia palustris, 

Potamogeton berchtoldii 

Peplids Plants with oblong and spatulate leaves, the 

upper ones forming floating rosettes 

Callitriche spec. 

Vallisnerids Submerged plants with a short stem and a 

rosette or bundle of long, linear, floating 

leaves, rooted in the soil 

Sparganium spec., 

Vallisneria spiralis 
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Macrophyte sampling was done in the main growing season (July to mid-September). 

One 200 m reach (Figure 2-1, Table 2-1) was sampled in each of the restored and 

degraded sections by wading in a zigzag manner across the channel and walking along 

the riverbank. In non-wadable areas, the river bottom was raked with a rake (on a long 

pole or at the end of a rope) to reach the macrophytes. All macrophyte species were 

recorded and identified to species level, except for Callitriche stands without fruits, which 

were identified to genus level. The survey included all submerged, free-floating, 

amphibious and emergent angiosperms, liverworts and mosses. In addition, plants were 

recorded which were attached or rooted in parts on the river bank that were likely to be 

submerged for more than 85% of the year. The abundance of each species was recorded 

according to the 5-point NOVANA scale: 1= 1-5 %; 2= 5-25 %; 3= 25-50 %; 4= 50-

75 %; 5= 75-100 %. Additionally, the growth form of each species was recorded 

according to Den Hartog & Van der Velde (1988) and Wiegleb (1991). The growth forms 

(Table 2-7) comprise different plant species that realized the same or comparable 

phenotypical adaptations to the aquatic environment. 

2.7 Ground beetles 

Ground beetles were investigated in one reach of each restored and degraded section, 

with the length of the reaches (200 or 500 m) depending on the wetted channel width 

(Table 2-1). Sampling season was late June to early August at conditions of low 

discharge; in the Scandinavian sites ideally August, in the Mediterranean sites ideally late 

June. As there is no standard method for ground beetles, we developed a mesohabitat-

specific sampling procedure similar to the multihabitat sampling of benthic invertebrates 

(Haase et al. 2004). 

The sampling area comprised max. 10 m wide strips of all riparian areas including river 

banks left and right of the river channel and mid-channel bars. If width of the river banks 

was less than 10 m (common in degraded reaches), the sampling area only included the 

area below the high-water level. If the banks of degraded sections were made up of 

riprap, we positioned the traps in the embankment, preferably in the shortest distances 

to the area of high-water level. 

The coverage of different riparian mesohabitats (Table 2-8) was estimated in each 

sampling strip in 10 %-steps; mesohabitats with coverage of < 10 % were recorded and 

marked with an “x”. If available, aerial photographs and/or transect data of recorded 

channel features were additionally used. 

Only mesohabitats with a coverage of at least 10 % were sampled. Each 10 % of total 

habitat coverage accounted for one riparian beetle sample; so, according to the 

mesohabitat composition 10 samples were taken per sampling reach. 

Vegetated mesohabitats were sampled by using pitfall traps (diameter 4 cm, depth 

8.5 cm, volume 200 ml) filled with 100 ml Renner-solution (40 % ethanol, 20 % 

glycerine, 10 % acetic acid, 30 % water) and a detergent to reduce surface tension. The 

pitfall traps were secured from rain and falling leaves by a petri dish (9 cm diameter) as 

a roof. Traps were exposed for one week. After collecting the traps, larger animals that 

are not part of the epigeic arthropod fauna were removed; mice were preserved 

separately. All other animals were placed in vials (1 vial per pitfall trap) and preserved 

with 96 % ethanol.  
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Open bars (mesohabitats with < 25 % vegetation coverage) were sampled by ‘hand 

sampling’ at sunny days. Organisms were collected with an exhaustor in an area of 1 m2 

per sample. A wooden quadratic frame (50 x 50 cm = 0.25 m2) was used to delineate the 

surface area to be sampled. For one sample, four 0.25 m2 areas were sampled parallel to 

and in direction of the shoreline. Each area was scanned for a maximum of 10 minutes 

by turning over all mineral and organic substrates to collect riparian beetles, which hide 

or live in the underground. Afterwards, water was poured over the area to drive 

organism hidden in the interstitial to the surface. All organisms were sucked in with the 

exhaustor, killed using some drops of ethylacetate and afterwards preserved with 96 % 

ethanol. The 10 individual samples per sampling reach were kept separate. For each 

sample, we recorded the sampled mesohabitat and the type of sample in the field 

protocol. Ground beetle species were identified to the species level according to Müller-

Motzfeld (2004).  

 

Table 2-8 Classification of mesohabitats used for the sampling of ground beetles 

Mesohabitats for carabid 

sampling 
Description 

Riparian forest 
> 25 % coverage of woody riparian vegetation; 

trees cover the area 

Pasture Gras land (no tree cover) 

Other herbaceous vegetation Riparian herbaceous vegetation (no tree cover) 

Vegetated swamp Very moist (muddy) vegetated patches 

Steep (unvegetated) 

embankment 

Steep brim at riparian area with an inclination 

>50° 

Open gravel bar  < 25 % vegetation coverage, dominated by gravel 

Open sand bar  < 25 % vegetation coverage, dominated by sand 

Open mud bar < 25 % vegetation coverage; dominated by mud 
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2.8 Floodplain vegetation 

Floodplain vegetation was sampled in summer (June-July) in one reach of each restored 

and degraded section, with the length of the reaches (200 or 500 m) depending on the 

wetted channel width (Table 2-1). We chose three of the transects that were surveyed 

for hydromorphology (transect method), one at the lower, middle and upper end of the 

sampling reach. 

First, the length of vegetation units, classified according to Oberdorfer (1983, 1992) and 

Ellenberg (1996) to the order level (Table 2-9), were measured along transects to 

determine the proportion of vegetation units per reach. 

Second, each of the transects was divided into three subzones of equal length on each 

side of the main channel, with subzone 1 located nearest to the waterline of the main 

channel. If for example the total width of the floodplain at one site of the main channel is 

100 m, then each sub-zone will be 33 m. A total of 12 sample plots (size 0.5 m x 0.5 m) 

per transect was established (six on each side of the main channel) differently distributed 

within the subzones following a randomized and stratified sampling approach. At each 

side of the channel, three sample plots per transect were placed evenly distributed in the 

first subzone, two sample plots were placed in the second subzone and finally one sample 

plot was placed in the third subzone. The total number of sample plots per reach was 18 

sample plots in subzone 1, 12 sample plots in subzone 2 and six sample plots in subzone 

3. In case of a narrow floodplain (e.g. just 5 meters of each side of the channel), in 

which the sample plots could not be distributed along transects, nine sample plots were 

placed close to the waterline of the main channel, three at the margins of waterline and 

six in between. Within the sample plots, plant species and their abundance were recorded 

by estimating their coverage following the classification of Braun-Blanquet: (0-1 %, 1-

5 %, 5-25 %, 25-50 %, 50-75 %, 75-100 %) and  values were transformed into the 

Ord% scale (1, 2, 8.5, 35, 70, 140) following Van der Maarel (2007). 

 

Table 2-9: Classification of vegetation units according to Oberdorfer (1983, 1992) and 

Ellenberg (1996) adjusted to particular ‘new’ units. 

Name of vegetation 

unit 
Description 

Aegopodion Nitrophilous stands dominated by Urtica dioica, Aegopodium 

podagraria or Galium aparine 

Afforestation with non-

native or atypical species 

Embankment afforestations with Salix-, Alnus or Fraxinus-species 

(atypical or non-native species) 

Afforestation with 

Populus sp. 

Afforestation with Populus-species 

Agropyro-Rumicion Grassland in frequently flooded areas dominated by Alopecurus 

geniculatus 

Alno-Padion Most frequent floodplain-forests in low-mountain regions dominated 

or characterized by Alnus glutinosa (tree layer) and Stellaria 

nemorum in the herb layer 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 32 of 240  

 

Table continued 

Name of vegetation 

unit 
Description 

Arrhenatherion - 

fragment association 

Mown (or grazed) grassland dominated by Arrhenatherum elatius and 

other meadow-species like Trifolium pratense, T. repens, Alopecurus 

pratensis or Leucanthemum vulgare, as well as species poor stands 

composed of Arrhenatherum elatius and a few other species (e.g. 

Dactylis glomerata, Taraxacum officinalis agg.) frequently abandoned 

Artemisietea fragments  Stands dominated by Elytrigia repens or with high cover values of 

Cirsium arvense 

Bidention - fragment 

association 

Species poor and not well developed stands dominated or 

characterized by Bidens-species 

Calthion Moist, species poor grassland dominated by Scirpus sylvaticus (and 

Juncus effusus) 

Calthion elements Moist, species poor grassland dominated of or only comprising Juncus 

effusus 

Calthion-Filipendulion Embankment edges dominated by Mentha aquatica and others 

Calystegion - fragment 

association 

Nitrophilous stands dominated by Impatiens glandulifera 

Calystegion sepi Nitrophilous stands dominated by Calystegia sepium, Convolvulus, 

Galium aparine (and Urtica dioica) 

Calystegion sepi - 

fragment 

association_Heracleum 

Nitrophilous stands dominated by or only comprised of Heracleum 

mantegazzianum 

Calystegion sepi - 

fragment 

association_Fallopia 

Stands dominated by Fallopia ssp. 

Calystegion sepi - 

fragment 

association_Solidago 

Nitrophilous stands dominated by or only comprised of Solidago 

Carpinion Forests characterized by Carpinus ssp. and Quercus robur in the tree 

layer, Stellaria holostea and Poa nemoralis in the herb layer 

Dauco-Melilotion_diverse Dry ruderal stands dominated or characterized by Daucus carota, 

Melilotus ssp. or Echium vulgare 

Dauco-

Melilotion_Tanacetum 

Stands dominated by Tanacetum vulgare 

Epilobion fleischeri Open gravel banks dominated by Salix purpurea, Myricaria germanica 

and different weeds  
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Table continued 

Name of vegetation 

unit 
Description 

Fagion Forests dominated by Fagus sylvatica 

Glycerion_Sparganium Stands of Sparganium ssp. in running water bodies with low current  

Glycerion_Glyceria Stands dominated by Glyceria fluitans or G. plicata 

Glycerion_Veronica Stands dominated by Veronica beccabunga 

Lemnion Stands of floating Lemna ssp. 

Magnocaricion Stands of tall sedges like Carex gracilis, C. acutiformis 

Mixture of Sysimbrion-

Chenopodium-Dauco-

Melilotion on gravel bars 

Sparse vegetation on open gravel banks comprising a species-

mixture from many different  units, frequently characterized by 

predominantly dry-ruderals like Daucus, Melilotus, Sisymbrium, 

Echium or other ruderals like Arctium, Saponaria, Alliaria  

Nymphaeion Flooding stands of Myriophyllum spicatum 

Phalaridion Reeds of Phalaris arundinacea 

Phragmition_Phragmites Stands of Phragmites australis 

Phragmition_Typha Stands dominated by Typha latifolia 

Plantaginetalia 

fragments 

Stands of agricultural managed grasslands with high covers of Lolium 

perenne or Agrostis stolonifera not part of the Arrhenaterion 

vegetations 

Potamogetonion_Elodea Standing water bodies dominated by Elodea-species 

Potamogetonion_diverse Stands of floating species like Nymphaea, Nuphar, Potamogetum etc. 

Potamogetonion - 

Pot_Glyc 

Stands of Potamogetum-species in pools or in water bodies with low 

current, frequently mixed with Glyceria ssp. 

Pruno-Rubion-fruticosi / 

Calystegion sepi - 

fragment association 

Shrub patches dominated or characterized by Rubus fruticosus agg. 

or R. caesius 

Quercion Woods and forest on acidous soils dominated by Quercus petraea 

Ranunculion / 

Nymphaeion 

Stands in pools or in water bodies with low current dominated or 

characterized by Callitriche ssp. 

Ranunculion fluitantis Flooding stands of Ranunculus fluitans 

Rubo-Prunion Shrub patches dominated or characterized by Prunus spinosa or 

Crataegus ssp. 
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Table continued 

Name of vegetation 

unit 
Description 

Salicion albae_1 Frequently flooded woods and forests dominated by Salix alba or S. 

fragilis (and hybrids) 

Salicion albae_2 Floodplain-woods characterized by Salix viminalis, S. cinerea or S. 

triandra 

Salicion eleagni Pioneer-vegetation on gravel banks; Myricaria germanica, Salix 

purpurea 

Sambuco-

Salicion_Betula 

Wood and shrubland of early successional stages dominated by 

Betula pendula 

Sambuco-

Salicion_Sambucus_Salix 

Open woods in early successional stages dominated by Sambucus 

ssp., Salix caprea 

Senencion Union 

fluviatilis 

Stands dominated by Impatiens glandulifera, Solidago canadensis 

and Urtica dioica 

 

2.9 Stable isotopes (N and C) 

Stabile isotopes were investigated at time of maximum biomass in summer 2012 or 2013 

in one sub-reach of each restored and degraded section, with the length of the reaches 

(200 or 500 m) depending on the wetted channel width (Table 2-1). The sampling 

procedure and the stable isotope analysis supported the investigation of effects of river 

restoration on ecosystem functioning. It aimed to show the effect of hydromorphological 

restoration on aquatic terrestrial linkages and on the complexity of food webs by 

comparing restored and degraded reaches across Europe. Therefore, the sampling was 

done in aquatic, riparian and terrestrial areas aiming to cover the dominant taxa of each 

component to gain a representative and comparable overview of the trophic structure. 

The following components of the food web were sampled: fine and coarse particulate 

organic sediment (POM), periphyton, dominant aquatic and riparian plants, dominant 

benthic invertebrates, and predatory riparian and terrestrial arthropods (beetles and 

spiders).For the sampling of benthic invertebrates we further categorized into the 

following functional feeding types: predators, shredders, grazers, collector-filterers and 

collector-gatherers and we aimed to cover at least the dominant taxa for each of these 

types. 

Samples of stream bed organic sediment (POM) were taken with a sediment corer in ten 

different POM deposition zones per reach. The upper 1-2 cm of the sediment core were 

transferred to a sample bucket. The samples were pooled in a bucket per reach. In the 

laboratory, fine and coarse POM was separated by sieving and benthic invertebrates were 

removed. 

Periphyton was brushed from randomly selected plants and/or stones into stream water 

and filtered through Whatman GF/F filters. Aquatic and riparian plants were sampled by 

taking at least one sample of the dominant species along the section. Plants were 
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identified to genus level. For each sample, different plants/stands of the same species 

were collected to achieve a representative composite sample. 

Benthic invertebrates were taken from different habitats along the section using a shovel 

sampler (mesh size 500 μm) and hand net. The sampling aimed to collect late-instar 

larvae of major taxa representing the following functional feeding types:  

- Predators (e.g. Rhyacophila sp., Sialis sp.), 

- Grazer (e.g. Baetis sp., Rhithrogena sp.), 

- Shredders (e.g. Gammarus sp., Asellus sp., Nemoura sp.), 

- Collector-gatherers (e.g. Oligochaeta,) 

- Collector-filterers (e.g. Hydropsyche sp., Simuliidae sp.). 

In the field, individuals were pre-sorted to genus level, counted and kept separated by 

functional feeding groups to avoid contact between predators and prey. For each feeding 

group at least one composite sample was taken. Each sample consisted of several 

individuals to obtain sufficient material for analysis. 

Riparian and terrestrial ground-beetles (Carabidae) and spiders (Araneae) were sampled 

using an exhaustor. They were collected within 1 m of the stream edge, terrestrial 

arthropods across the top edge of the embankment. Sampling locations were randomly 

selected along the sample sections. Each composite sample consisted of several 

individuals. All samples were placed in a frost box in the field.  

Fish sampling was optional and depended on fishing restrictions within the countries. In 

case fish were sampled, they were identified to species level; the length and weight of 

each fish was measured. For each sample, tissues (liver and dorsal muscle) were taken.  

In the laboratory, benthic invertebrates, riparian and terrestrial arthropods were kept 

individually for 12 to 24 hours to allow for gut evacuation. In case of benthic 

invertebrates they were kept in filtered stream water. Afterwards, specimen were 

identified to the lowest feasible level. 

To prepare samples for stable isotope analysis they were ground with mortar and pestle 

and freeze-dried afterwards until all water has been removed. According to the amount 

of sample material, four subsamples of each component were loaded into tin capsules 

(species ~0.8 mg and sources 2-15 mg). Content of carbon (C) and nitrogen (N) and 

stable isotopes of C and N were analysed with an elemental analyser (CE Instruments – 

EA 1110 CHNS) connected to a Thermo Finnigan MAT 253 isotope ratio mass 

spectrometer at University of Duisburg-Essen’s Stable Isotope Facility (Instrumental 

Analytical Chemistry Department).  

Data of the stable isotope analysis are expressed as relative difference between ratios of 

samples and standards (VPDB for δ13C and air for δ15N). The analytical precision over all 

measurements (standard deviation from 791 in-house standards) was 0.08‰ for δ13C 

and 0.19‰ for δ15N. 

2.10  Database 

To enable the investigation of the effects of hydromorphological river restoration 

measures on river habitats and biota, task 4.2 and 4.3 required the collection of various 

variables for each dataset. Thus, comparable data on hydromorphology, pressures, 
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restoration measures, land use and numerous biotic key variables, potentially 

constraining or enhancing restoration success were collected for all cases study 

catchments. Data were compiled from current field sampling (see Chapters 2.3-2.9) as 

well as already existing monitoring data of the case study sites. Additionally data from 

national databases of the WP4 partner countries supplemented the data records. 

The database for the collected information on all WP4 case study catchments consists of 

several sheets for the various key subjects, tables with ID and taxa lists as well as a 

detailed description of all required variables. Approximately 600 parameters were defined 

to describe the following key subjects:  

 five abiotic (site information, hydromorphology, pressure types, restoration 

measure types, physico-chemical data),  

 five biotic (fish, invertebrates, macrophytes, riparian beetles, floodplain 

vegetation) and  

 seven catchment related subjects (BQE status, colonization sources, 

hydromorphology, hydromorphological pressures, pressure point/diffuse sources, 

physico-chemical data, additional parameter). 

Table 2-10 gives an overview of the database’s content. More detailed tables and 

descriptions of all variables and parameters of the database can be found in Annex A. 
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Table 2-10: Content overview of the WP4 database. 

Table Content No. of 

entries / 

variables 

 

Abiotic data (according to task 4.2) 

SiteInfo General information on case study site 53 

Hydromorph Information on hydromorphology of the site 38 

Pressure Information on pressure types of the site 28 

RestorMeasures Information on restoration measures of the site 81 

PhysChemic Information on physic-chemical parameters 21 

 

Biotic data (according to task 4.3) 

Fish   

Fish Site General info on fish sampling reach 8 

FishSample Specific info on fish sampling (date, method, etc.) 27 

Fish Catch Specific info on fish catches (taxa, etc.) 9 

Invertebrates   

InvSite General info on invertebrates’ sampling reach 6 

InvSample Specific info on invertebrates’ sampling (date, method, 

etc.) 

8 

InvCatch Specific info on invertebrates’ catches (taxa, etc.) 4 

Macrophytes   

MacrophSite General info on macrophytes’ sampling reach 5 

MacrophSample Specific info on macrophytes’ sampling (date, method, 

etc.) 

7 

MacrophCatch Specific info on macrophytes’ catches (taxa, etc.) 6 

Riparian beetles   

BeetSite General info on sampling points of riparian beetles 5 

BeetSample Specific info on sampling of riparian beetles (date, 

method, etc.) 

16 

BeetCatch Specific info on riparian beetles’ catches (taxa, etc.) 7 

Floodplain Vegetation   

VegSite General info on vegetation sampling reach 5 

VegSample Specific info on vegetation sampling (date, etc.) 6 

VegTransUnit Info on transects, vegetation orders and units 7 

VegTaxa Specific info on vegetation taxa and coverage 5 

 

Catchment data (according to task 4.2 and 4.3) 

BQE_status Info on Biological Quality Classes for different buffers 35 

Colonization sources  52 

Hydromorph General info on hydromorphology of the catchment 15 

Pressure_hydromorph Info on hydromorphological pressures in the catchment 63 

Pressure_sources Info on point / diffuse sources of pressure in the 

catchment 

26 

PhysChemic Info on physico-chemical parameters in the catchment 75 

Additional parameter General info about the catchment (GDP, population 

density, etc.) 

9 
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3. Overview analysis  

3.1 Introduction 

Worldwide, rivers are being restored at an increasing rate to enhance overall biodiversity, 

re-create fish habitats and to increase attractiveness and ecosystem services provision 

(Bernhardt et al. 2005; Strayer & Dudgeon 2010). River restoration is a business worth 

billions of dollar / Euro and driven by societal demands and respective legislation, such 

as the EU Water Framework Directive (WFD) or the Clean Water Act in the US (Baron et 

al. 2002; Sondergaard & Jeppesen 2007; Palmer 2009). In Europe, recent inventories 

highlight the pivotal role of river hydromorphology for river biota and ecological status: 

The hydromorphology of about 50% of European river water bodies is degraded; in 

Central European countries such as Germany and the Netherlands almost all river 

sections are affected (EEA 2012). Consequently, the majority of river restoration 

measures will in future need to target hydromorphological improvements. 

In sharp contrast to the demand and investments in restoration little is known about 

restoration effects and factors responsible for success or failure. The majority of 

measures, both in Europe and North America, have hardly been subjected to monitoring 

and evaluation (Bernhardt et al. 2005, Jähnig et al. 2011). However, recently a growing 

body of literature deals with river restoration effects on hydromorphological and biotic 

response variables. The majority of studies report minor effects on benthic invertebrates 

(Harrison et al. 2004; Jähnig et al. 2010; Haase et al. 2013; Friberg et al. 2014), and 

minor to medium effects on macrophytes (Pedersen et al. 2007; Lorenz et al. 2012) and 

fish (Roni, Hanson & Beechie 2008; Lorenz et al. 2013; Schmutz et al. 2014; Stoll et al. 

2014), while direct effects on hydromorphology and effects on floodplain biota are 

stronger (Woolsey et al. 2007; Jähnig et al. 2009; Januschke et al. 2014).  

A variety of reasons for limited biotic effects of hydromorphological restoration measures 

has been suggested, including stressors acting at larger scales, such as catchment land 

use, water quality, and hydrological alterations; the insufficient restoration of 

hydromorphological processes; minor changes in relevant microhabitats; lack of 

recolonization potential and blocked recolonization pathways.  

Viewed in more detail, water quality parameters, in particular oxygen depletion caused 

by organic pollution, acts as an overarching stressor and may mask the effects of habitat 

enhancement (Sundermann et al. 2011; Wahl, Neils & Hooper 2013). In principal, other 

water quality parameters, such as pesticides, can act similarly (Rasmussen et al. 2012; 

Malaj et al. 2014). There is overwhelming evidence that stressors acting at larger spatial 

scales (catchment, sub-catchment, reaches of several kilometre lengths) strongly 

determine aquatic assemblage composition (Kail & Hering 2009; Lorenz & Feld 2013; 

Marzin, Verdonschot & Pont 2013; Verdonschot et al. 2013). The pathways are manifold 

(Feld et al. 2011) and include, in addition to water quality, alteration of water 

temperature (Kiffney, Richardson & Bull 2003) and fine sediment entry (Teufl et al. 

2013). All these can significantly influence assemblage composition in a restored reach 

and thus limit restoration effects. The generation and establishment of habitats relevant 

for aquatic biota requires hydromorphological processes addressing the overall 

morphological character at a larger spatial scale (e.g. initiating a braiding system) and 

therewith the generation of gravel bars, pools and riffles and supply of large wood. In 

many projects, these processes are not being restored and biological effects are 
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therefore vanishing once the restored habitats have been subject to hydromorphological 

and biological processes (Hughes, Colston & Mountford, 2005). In other cases the 

habitats relevant for sensitive biota are not being generated to a sufficient degree. This 

particularly concerns benthic invertebrates, which are often depending on few key 

habitats such as wood or gravel, which are either not resulting from restoration (Jähnig 

et al. 2009) or covered by fine sediment soon after restoration (Lorenz, Jähnig & Hering 

2009). Even if habitats have been generated, there is no guarantee that they are being 

colonized by aquatic species sensitive to anthropogenic disturbance and that measures 

are initiating changes in the composition of aquatic assemblages. Due to long lasting 

river degradation and pollution, populations of sensitive species have been eradicated 

from entire catchments and source populations from which restored sections could be 

recolonized are scares (Harding et al. 1998; Hughes 2007). Recolonization may further 

be obstructed by barriers in the river (most relevant for fish; Roberts, Angermeier & 

Hallermann 2013) and the surrounding landscape (most relevant for dispersing adults of 

aquatic insects; Dedecker et al. 2007). In conclusion, restored river reaches might be 

impacted by a mix of stressors with manifold and complex interactions that will retain 

them in an unfavourable condition.  

Many of these parameters, which potentially limit the effects of habitats enhancement, 

may be mitigated in large restoration projects where restored sections were relatively 

long and/or restoration actions have been intense, and hence, restoration effect possibly 

depends on restoration extent. Hydromorphological processes are scale dependent, 

including the formation of meanders and braided patters and of riffle-pool sequences 

(Richards et al. 2002). Similarly, water quality parameters may differ between short and 

long restored river sections: the effect of riparian forests on water temperature is 

depending on the length of a shaded river section (Kiffney et al. 2003); self-purification 

depends on the length of a section with near-natural morphology. Short restored sections 

are relatively stronger impacted by stressors acting at the catchment scale, e.g. fine 

sediment entry. Viable populations of aquatic organisms require a minimum area of 

suited habitats. Finally, the effect of natural channel features like large wood or boulders 

on habitat conditions and biota simply depends on the amount present. A strong 

correlation between the restoration extent and the biological effects can therefore be 

assumed.  

In this study we analysed the effects of hydromorphological river restoration measures 

on different response variables. We investigated ten pairs of one large (R1) and one 

similar but small (R2) restoration project to address the role of restoration extent for 

river restoration effects. The restoration effect was quantified by comparing each 

restored river section (R1 and R2) to a nearby non-restored degraded section (D1 and 

D2) (space for time substitution). We addressed a large number of response variables, 

including habitat composition in the river and its floodplain, three aquatic organism 

groups, two floodplain-inhabiting organism groups, as well as food web composition and 

aquatic land interactions reflected by stable isotopes (see Chapter 1.2 for a more detailed 

description of the study design).  

In this overview analysis, we quantified the difference between the restored (R) and 

corresponding degraded control reaches (D) for all response variable using the Bray-

Curtis dissimilarity index, while the more detailed analysis of the single response 

variables is described in the following Chapters.  
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3.2 Material and methods 

Study sections and sampling methods 

The study sections and reaches as well as sampling methods for the response variables 

are described in Annex B and Chapter 2.3 to 2.9. 

 

Data analysis 

For each response variable, Bray-Curtis dissimilarity between the restored (R) and the 

nearby no-restored, degraded section (D) was calculated. The dissimilarity expresses the 

“effect size”, i.e. a high Bray-Curtis dissimilarity is indicating a high effect size. For the 

biotic response variables we used species-station tables indicating the (relative) 

abundance. In case of floodplain vegetation species coverages in each plot were 

transformed into the Ord% scale, which is an appropriate transformation before 

conducting numerical analyses on vegetation data (van der Maarel & Franklin 2013). For 

floodplain mesohabitats and instream microhabitats we used tables indicating the relative 

coverage of habitats in the river sections. For flow velocity patterns a table with the 

number of aquatic survey points meeting the individual flow velocity classes were used. 

For stable isotopes (C and N) tables indicating the relative content of δ13C and δ15N 

(in ‰), respectively, in the individual sampled components were used. In contrast to all 

other parameters the stable isotope tables had no missing values, as always the same 

set of components was sampled. 

First, we tested if the general effect of restoration in the 20 restored sections differed 

between the response variable, i.e. if the mean effect sizes of the response variables 

were significantly different using a one-way ANOVA. Second, we tested if restoration had 

a larger effect on the different response variables in large (R1) compared to the small 

(R2) restored sections, i.e. if effect sizes were significantly different in the ten large (R1) 

compared to the corresponding ten small (R2) restoration projects using a Wilcoxon 

Matched Pair Test. Third, we re-grouped the sections based on the analysis of the 

hydromorphological data survey and compared sites with larger changes in substrate and 

habitat composition (S1) to those with smaller changes (S2). For each of the ten pairs of 

restoration projects (i.e. region), the restored section with the strongest difference in 

substrate composition compared to the corresponding unrestored, degraded section was 

labelled as S1, while the other restored section was labelled S2. The resulting grouping 

based on the instream substrates (relevant for benthic invertebrates, macrophytes and 

fish) were always equivalent to the grouping resulting from the floodplain habitats 

(relevant for floodplain vegetation and ground beetles). For six of the ten pairs / regions 

the S1 sections were identical with the large restoration projects (R1), but in four regions 

(Switzerland, German mountain area, Denmark, Netherlands) the stronger changes in 

instream habitats occurred in the smaller restoration projects (R2). For each response 

variable, we tested if effect sizes were significantly different in the ten S1 compared to 

the corresponding ten S2 restoration projects using a Wilcoxon Matched Pair Test. 

Bray-Curtis dissimilarity was calculated with a self-written Excel macro, all other analyses 

were performed in R (Version 3.0.2, http://www.r-project.org/).  

 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 44 of 240  

3.3 Results 

Overall effect of restoration on response variables (R1 and R2 pooled) 

In general, restoration effect differed between the response variables despite the 

regional differences in river and project characteristics (e.g. river size, restoration 

measures). Considering all restoration projects regardless of restoration extent (R1 and 

R2 sections pooled), Bray-Curtis dissimilarity significantly differed between the response 

variables (Figure 3; one-way ANOVA, F9/185=35.21, p<0.01).  

 

Figure 3-1: Figure 3: Restoration effects on response variables.  

Floodplain biota (ground beetles and floodplain vegetation) were among the variables 

most strongly responding to restoration. The general order of response variables 

according to the effect sizes shows comparatively strong effects on aquatic biota 

(macrophytes, benthic invertebrates and fish) and weak effects on floodplain habitats 

(Figure 3-1).  
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Differences of restoration effect in large and small projects (R1 vs. R2) 

Restoration effect did not differ between the large (R1) and small (R2) restoration 

projects (Figure 3-2). Positive values for the difference of the Bray-Curtis dissimilarity of 

a large (R1) minus a small (R2) restoration project indicates a larger restoration effect of 

R1 sections. Median difference of all ten pairs of restoration sections (R1 vs. R2) was 

indeed positive for all response variables, except for ground beetles and fish. However, in 

contrast to our expectations, restoration effects of large and small restoration projects 

were not significantly different (p > 0.17), except for the food web interactions (δ15N) 

(Wilcoxon Matched Pairs test, n=10, p < 0.05).  

 

Figure 3-2: Difference between the restoration effects (Bray-Curtis dissimilarity) of the 

large (R1) and small (R2) restoration projects (i.e. R1 minus R2 values) for 

morphological and biological response variables. Median values, quartiles, and non-

outlier range of all ten pairs are shown.  

 

Effects of substrate diversity 

Restoration effect was generally larger in those restoration projects where changes in 

aquatic substrate conditions were more pronounced compared to the corresponding 

restoration projects with smaller changes. Median difference of the ten pairs of 

restoration sections (S1 vs. S2) was positive for all response variables (Figure 3-3) 

indicating a larger restoration effect in S1 restoration projects to the corresponding S2 

projects. Moreover, restoration effect sizes of S1 projects were significantly larger for 

most response variables: benthic invertebrates, aquatic macrophytes and all recorded 

morphological response variables (flow diversity, floodplain habitats) (Wilcoxon Matched 

Pairs test, n = 9-10, p < 0.05). Though differences between S1 and S2 were not 

significant for fish (probably due to the small sample size), the differences were positive, 

larger than between R1 and R2, and nearly significant (p = 0.08).  
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Figure 3-3: Difference between the restoration effects (Bray-Curtis dissimilarity) of the 

restored sections with higher changes in substrate conditions (S1) and the 

corresponding restored sections with smaller changes (S2) (i.e. S1 minus S2 values) for 

morphological and biological response variables. Median values, quartiles, and non-

outlier range of all pairs are shown.  

 

3.4 Discussion 

Effects of restoration on different response variables 

In line with the results of Jähnig et al. (2009, 2011), we expected a ranking of response 

variables in terms of restoration effects (Figure 3-1), with strong effects on floodplain 

habitats, floodplain biota and land-water interactions, and only minor effects on aquatic 

organism groups such as benthic invertebrates and macrophytes. This hypothesis was 

partly confirmed; though restoration effects on floodplain biota were strongest, we also 

observed compositional changes of fish, benthic invertebrates and aquatic macrophytes, 

while changes of land-water interactions reflected by carbon isotope signatures were 

minor. Possible reasons for these observations, which differ from what has recently been 

published, include factors related to both the investigated restoration measures and our 

data analysis strategy.  

The observed strong restoration effects on floodplain biota are in line with several 

publications (Rohde et al. 2005; Lambeets et al. 2008; Jähnig et al. 2009; Meyer et al. 

2010; Januschke et al. 2011). Hydromorphological restoration, even relatively small 

measures, tend to create habitat types close to the land-water interface (such as gravel 

and sand bars), which are almost completely lacking in degraded sections. Such habitat 

types are rapidly colonized by riparian ground beetles and, to a lesser degree, by 

specialized floodplain vegetation. Both organism groups have a comparatively high 

dispersal ability (Bates, Sattler & Fowles 2006; Johansson & Nilsson 1996; Soons 2006). 

We also suppose effects on land-water interactions, as particularly riparian ground beetle 

species feed on aquatic organisms, which emerge close to the shoreline or are washed 

ashore (Paetzold, Schubert & Tockner 2005). For the overall composition of carbon 
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isotope signatures, however, these alterations do not suffice, as they just affect single 

components of the food web. 

The relatively strong effect of restoration on aquatic biota (fish, benthic invertebrates, 

macrophytes) corresponds to the significant effects of restoration found in recent meta-

analyses (Miller, Budy & Schmidt, 2010; Kail and Angelopoulos 2014) but differs from the 

small or missing effect reported in many other studies (e.g. Lepori et al. 2005; Jähnig et 

al. 2010; Palmer, Menninger & Bernhardt 2010). In parts, this may be due to our type of 

data analysis. In contrast to several other publications we did not compare metrics but 

compared taxa lists using a dissimilarity coefficient. The Bray-Curtis Index can be applied 

to a wide array of response variables, including all (semi)quantitative taxa lists and also 

(semi)quantitative lists of habitat composition. This is an advantage over metrics such as 

feeding type composition or indices used for bioassessment, which are specific for 

individual organism groups and can therefore not be used to compare different response 

variables. However, the Bray-Curtis Index has its limitations. First, dissimilarity is not 

necessarily related to quality nor to successional stage: strong dissimilarities between 

assemblages (such as ground beetles) of restored and degraded sections may be caused 

by various reasons, including natural variability, increasing or decreasing environmental 

quality. Second, the number of observed species or habitats influences the results; in 

case of fish or floodplain habitats it is more likely that all species or habitats present in 

the section have been recorded, while in case of benthic invertebrates some species 

might have been overlooked. Third, the result is not just determined by abundances but 

also by the number of species, habitats or components both sections have in common; 

this explains the always very high similarities in case of carbon and nitrogen isotopic 

composition, as, in each case, the same set of components has been sampled. The effect 

size per se is therefore hardly comparable between the isotopic composition and the 

other parameters, while the size effect or the effects of habitat alterations can be 

compared.  

Despite these methodological limitations, the results reflect surprisingly strong 

restoration effects. One reason is the representation of extensively restored “flagship 

projects” and restored sections with substrate compositions greatly differing from 

degraded sections. These are much more likely to yield positive results on aquatic biota 

than those reported in the majority of recent publications, which is supported by a meta-

analysis of Kail and Angelopoulos 2014 showing that the variability of restoration effect is 

high.  

 

Restoration extent 

We expected stronger restoration effects in case of large restoration projects. 

Furthermore, we expected a strong effect of restoration extent on those response 

variables, which generally respond poorly to restoration. In these cases restoration 

effects will be most strongly masked by catchment influences, which decrease with 

restoration extent. These hypotheses were rejected, as effect sizes of only one response 

variables (food web interactions; δ15N) significantly differed between the large (R1) and 

small (R2) restoration projects. 

For the floodplain biota this observation is in line with the general ranking of response 

variables: in particular ground beetles responded in all cases strongly to restoration (in 

particular to river widening), even in small restoration projects and there is thus no 
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additional effect of restoration extent. Based on the species-area relationship we would 

expect an increase in local biodiversity with an increase in area (i.e. restoration extent). 

As the restored habitats are young most probably we are still only seeing pioneer species, 

and time is needed before more developed stages evolve. 

In case of the aquatic biota, most likely the majority of the large restoration projects (R1) 

were still too small to cause significant effects of restoration extent. With the exception 

of Skjern (Denmark) and Narew (Poland) all restored sections of the large restoration 

projects were shorter than, or equalling, 2 km, possibly not a sufficient length to initiate 

additional geomorphic processes or support viable populations of additional sensitive 

species. In the cases of the Skjern (compare Kristensena et al. 2014) and the Narew, 

however, the restoration measures were mainly affecting the floodplains, in which large 

flood prone areas were created, while there were relatively little changes in stream 

bottom substrates. In contrast, in the small restoration project Stora (Denmark) the 

focus was on instream measures, which directly generated habitats for aquatic organisms. 

This example shed light on an intriguing result of our study, namely the strong effect of 

habitat alterations on aquatic biota, which overrules possible effects of restoration extent. 

Based on these results, one should not conclude that it is sufficient to restore short river 

sections and implement small restoration projects. The majority of the large restoration 

projects (R1) were still too small to cause significant differences compared to the smaller 

projects (R2). For example, restored section length was less than or equalling 2 km, 

except for two restoration projects (see Annex B). This is consistent with the results of 

Kail and Angelopoulos (2014) who also concluded that the missing effect of restored 

section length on restoration success was most probably due to the short length of most 

restored sections investigated (< 2.6 km). Moreover, it is in line with the results of 

Schmutz et al. (2014), who observed a higher effect of restoration on the number of 

rheophilic fish species in long restored as compared to short restored sections but only at 

length greater than 3.8 km.  

 

Effects of substrate diversity 

The magnitude of changes in aquatic substrate conditions directly impacted benthic 

invertebrates, macrophytes and morphological variables and also initiated taxonomic 

changes of fish assemblages, though not significant. Ground beetle assemblages and 

carbon stable isotope signatures, however, were not related to substrate conditions of 

the restored sites but responded already to slight changes in habitat composition.  

In case of floodplain biota a similar rationale as for the missing effect of restoration 

extent can be assumed: already the relatively minor substrate alteration in the S2 

sections caused significant effects, and in case of larger substrate changes no additional 

effects were generated.  

For the aquatic biota, in particular for benthic invertebrates, our results differ from the 

majority of published studies. For example, Jähnig et al. (2008) observed Bray-Curtis 

similarities of 69-77% between benthic invertebrate assemblages of restored (braided) 

and nearby degraded mountain stream sections with only very few taxa specific for the 

restored sections. Based on an extensive literature analysis, Kail and Angelopoulos 

(2014) recently summarized restoration effects on macrophytes, benthic invertebrates 

and fish: there are minor to medium effects of measures enhancing substrate diversity 
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(such as widening or addition of large wood); the mean species numbers and 

abundances in restored sections are between 1.13 and 1.2 higher than in control sections. 

It should be noted that these results are not necessarily comparable to dissimilarity 

indices, as used in our study.  

While there is an overall rationale for the coherence of changes in bottom substrates and 

changes in aquatic assemblages (i.e. the provision of habitat), there are often no 

biological effects of respective measures. We assume that in many published cases the 

measures did not result in significant and sustainable instream habitat changes and that 

therefore the response of biota is minor. When relating measures and quantified habitat 

composition to biota, such as in our study, the coherence is much more obvious.  

 

3.5 Conclusion 

For effects on aquatic or floodplain biota, restoration extent was not directly relevant, 

maybe as even the large restoration projects investigated in our study are still too small 

for an additional positive effect based on project size. The study by Schmutz et al. (2014) 

suggests, however, the existence of a “size effect”. Habitat composition has an impact on 

both floodplain and aquatic biota. In case of the floodplain assemblages, in particular 

ground beetles, already minor restoration effort results in significant effects, obviously as 

small habitat patches are already sufficient. In case of aquatic biota, larger substrate 

changes are required, as revealed by the differences in effect sizes between projects 

leading to smaller and larger substrate changes. In conclusion, the effects of 

hydromorphological restoration measures on aquatic and floodplain biota strongly depend 

on the generation of habitats for aquatic and riparian organisms, which were not present, 

or not sufficiently so, prior to restoration. These positive effects on habitats are not 

necessarily related to restoration extent.  
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4. Hydromorphology 

4.1 Introduction  

River restoration is a key issue in River Basin Management. Over the last decades a 

variety of restoration measures have been conducted over different river types and 

spatial extents of restoration, starting from local and experimental projects to a broader 

scale implementation (Kondolf et al. 2007, Roni et al. 2008, RESTORE 2011 Failure or 

success of the implemented measures were documented for only few restoration projects, 

and long-term monitoring programs have rarely been carried out (Pander & Geist 2013, 

Smith et al. 2013, Kail & Angelopoulos 2014). In the context of the European Water 

Framework Directive (WFD) it is crucial to implement the most effective restoration 

measures and identify the most suitable indicators for assessing restoration 

effectiveness.  

In many restoration projects hydromorphological parameters have been used to assess 

restoration success (Morandi et al. 2014, Kurth & Schirmer 2014), often based on the 

assumption that the restored natural habitat heterogeneity would support good ecological 

condition. Although the relationships between habitat diversity and the response of 

specific organism groups (fish, macroinvertebrates, macrophytes) have been widely 

studied (Palmer et al. 1997 and 2010, Lepori et al. 2005, Vaughan et al. 2009, Friberg 

2010, Miller et al. 2010, Elosegi et al. 2011, Sundermann et al. 2011, Paillex et al. 2013), 

the biological indicators often have not shown response to restoration despite an 

enhancement in hydromorphological condition or heterogeneity. The restored habitat 

conditions might still not be favourable for the establishment of specific biological groups. 

However, at least three other factors not related to the restored habitat conditions can 

potentially explain a small biological response to hydromorphological restoration: Source 

populations might be missing (Schmutz et al. 2013), the post-restoration time might be 

insufficient to enable recolonization of biota (Hering et al. in prep.), or large-scale 

pressures might affect local biota in the restored reaches (Sundermann et al. 2011, 

Bernhard & Palmer 2011, Verdonschot et al. 2013). Therefore, hydromorphological 

variables should always be used in addition to biotic monitoring as basic parameters 

within restoration monitoring schemes to assess restoration success. This calls for 

choosing adequate parameters that portray habitat condition, habitat diversity and, 

optimally, processes within the monitored reach (Brierley et al. 2010) integrating effects 

from up- and downstream.  

Many indicator systems and protocols have been developed for determining the 

morphological condition of aquatic systems (Belletti et al. 2014). Such 

hydromorphological assessment methods, however, are not necessarily suited to 

evaluate restoration effect. Most of the physical habitat assessment methods focus on 

the reach scale describing meso- and/or microhabitat conditions and characteristics 

(Belletti et al. 2014, LAWA 2002). At the reach scale, changes in habitat diversity due to 

restoration can be measured, but the integration of large-scale influences may be 

insufficient (Brierley et al. 2010). Morphological assessment methods (Belletti et al. 2014) 

use larger river units such as river segments (REFORM 2014) and investigate parameters 

at wider spatial scales integrating dynamic processes (Brierley & Fryirs 2005, Rinaldi et al. 

2013). Assessing the effectiveness of river restoration requires identifying those 

hydromorphological parameters which are best suited to detect the main changes caused 
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by the specific restoration measures. These parameters potentially vary among river 

types.  

There is broad agreement that effects of reach-scale restoration are potentially 

constrained by catchment influences (Palmer et al. 2005, 2010, Beechie et al. 2010). 

Several studies indicated large impacts, especially on biota such as invertebrates, 

macrophytes and fish (Hering et al. 2006, Miller et al. 2010, Bernhardt & Palmer 2011, 

Lorenz et al. 2012, Kail et al. 2012, Trautwein et al. 2013, Schmutz et al. 2014). Such 

impacts have also been described on hydromorphological conditions. For example, 

changes in flow regime or sediment yield can affect restored reaches far downstream 

(Kondolf 1998, Ibisate et al. 2011, Schinegger et al. 2013). Restoration effect may thus 

depend on restoration extent (e.g. restored reach length) because negative effects from 

upstream pressures (e.g. fine sediment input) might be mitigated more effectively by 

larger restoration projects.  

Restoration measures restore natural channel dynamics by removing bank fixation and 

offering extended space for the river. It is intuitively appealing to assume that this It is 

intuitively appealing to assume that this in turn increases mesohabitat diversity due to 

the formation of bars, islands, secondary channels or standing water zones, and 

ultimately also enhances microhabitat conditions due to more diverse flow and substrate 

patterns. Accordingly, large river restoration projects that enhance macrohabitat 

conditions should also improve meso- and microhabitats. Moreover, large restoration 

projects enhancing natural channel dynamics potentially also have a larger effect on 

meso- and microhabitat conditions compared to smaller projects. There is, however, 

limited empirical evidence for this assumption. 

The main objective of this study was to investigate the effectiveness of restoration on 

different hydromorphological parameters in 20 restored sections across Europe. We 

specifically explored (i) whether the restoration effect depends on restoration extent 

described by the restored reach length and intensity as well as on the restoration 

measures applied, (ii) whether enhancing macrohabitat conditions in turn also improves 

meso- and microhabitats, i.e. restoration effects on habitats at larger scales are 

associated with effects at smaller scales, and (iii) which hydromorphological indicators 

are best suited to quantify restoration effects. 

We hypothesized that  

(i) the effect of restoration on hydromorphology increases with restoration extent 

and is higher in larger restoration projects compared to smaller projects 

because dynamic processes are enhanced and large-scale pressures mitigated,, 

independent of which type of river has been restored, 

(ii) enhancing macrohabitat conditions in turn also improves meso- and 

microhabitats, i.e. the effect of restoration on hydromorphology at the river 

section scale is associated with effects on meso- and microscale habitat 

conditions (but not vice versa), 

(iii) hydromorphological parameters that portray the re-establishment of dynamic 

processes are best suited to identify restoration effects.  
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4.2 Methods 

Study sections and sampling methods 

The study sections and reaches as well as the hydromorphological mapping methods are 

described in Annex B and Chapter 2.3.  

 

Study design to investigate the effect of restoration extent 

The extent of restoration was described by the restored reach length and restoration 

intensity. In addition, differences between the restoration measures applied and river 

types were considered. 

Restoration extent: The classification of the ten pairs of restoration projects was based 

on restored reach length and restoration intensity, with the longer sections or more 

intense restoration projects denoted as R1 and the shorter sections or less intense 

restoration projects denoted R2 (see Chapter 1.2).  

Restoration measures: Each restored section was assigned to one main restoration 

measure type based on the information available on the measures applied (see Annex B). 

As some main measures were only rarely represented by the case studies, we compared 

river “widening” (n=9) with all other restoration measure types (n=11). Concerning the 

length of the restored sections assigned to the main restoration type “widening” 

comprised five long restored sections (R1) and four short sections (R2).  

River types: The restoration measures applied differed between river types. In gravel-

bed rivers the restoration measures included removing river bed stabilization, 

restructuring and/or widening the riverbed and improving the lateral connectivity by 

reconnecting wetlands. In sand-bed rivers reconnecting old side arms and remeandering 

were the most significant restoration measures focusing on the main channel. In some 

cases the groundwater level was raised by constructing weirs and wetlands or oxbows 

were reconnected. Moreover, the study sections represented two main European river 

types: mid-sized gravel-bed rivers and mid-sized sand-bed rivers. The effect of river 

types on restoration effect was investigated because river types differed in respect to the 

main measures applied, and because the effect of restoration on river hydromorphology 

potentially differs between gravel-bed and sand-bed rivers. 

 

Study design to investigate the effect of restoration on hydromorphology at 

different spatial scales (macro-, meso-, microscale)  

Hydromorphology was mapped and assessed at different scales to investigate if 

enhancing macrohabitat conditions also improves meso- and microhabitats, i.e. if the 

effect of restoration on hydromorphology at the river section scale is associated with 

effects on meso- and microscale habitat conditions. Two different assessment methods 

were applied at two different spatial scales (see Chapter 2.3 for details): (i) a CEN 

compliant hydromorphological survey at the river section scale (Poppe et al. 2012) and 

(ii) a detailed mapping of meso- and microhabitat characteristics at the reach scale 

according to Jähnig et al. (2008) and Januschke et al. (2009). 

The basic spatial unit for physical river habitat assessment is the reach scale (Belletti et 

al. 2014, REFORM 2014). This is commonly a few hundred meters in length, and in our 
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study depended on the wetted channel width. The field survey was conducted at a larger 

spatial scale. These survey sections comprise several homogeneous river reaches and 

should reflect processes at larger spatial scales more adequately. The range of the 

surveyed sections is at the lower end of the segment scale which is defined in REFORM 

(2014) to be 1-100 km in length. Accordingly, we refer to the spatial extent of the 

surveys as “section scale”.  

 

Selection of hydromorphological indicators / parameters 

The following indicators of the section-scale and reach-scale mapping methods were 

selected as parameters for the analysis presented in this chapter (Table 4-1): 

Section-scale mapping: Based on the data from the section scale mapping (Poppe et al. 

2012), the mean of all 14 evaluation parameters was calculated as an indicator for the 

hydromorphological state at the section scale (Mean_hymo – “mean hymo survey 

evaluation”, Table 4-1). In addition, three indicators were used to describe the 

hydromorphological state following Jähnig et al. (2009), Kristensen et al. (2011) and Feld 

et al. (2014): (i) a five point ordinal-scale assessment of the occurrence of sediment 

depositions (gravel/sand/silt) and large woody debris (parameter “dynamic feature 

class“); (ii) channel width variability and (iii) the width of the riparian vegetation. These 

indicators were used as proxies for describing dynamic processes within the river 

channel, river banks and within the adjacent area of the floodplain at a wider spatial 

extent.  

Reach-scale mapping: Based on the data from the reach-scale mapping (Jähnig et al. 

2008, Januschke et al. 2009), the following indicators were used to describe the meso- 

and microhabitat conditions: For mesohabitat analyses we used the “Number of natural 

channel features” (NMchanfeat_nat), the “Number of natural dominant substrates” 

(NMsubstr_nat), the “Share of main channel width on total transect length (%)” 

(Mainchan_share), the “Shannon–Wiener Index” (SWI) as well as the “Spatial Diversity 

Index” (SDI; Fortin et al. 1999), the latter incorporating spatial occupancy patterns. Both 

diversity indices were calculated to detect channel features diversity at mesohabitat 

level, excluding non-natural elements for the SWI ('Artificial embankment' from channel 

features and 'Technolithal' from dominant substrates), and including natural and artificial 

ones for the SDI (Table 4-1). For microhabitat analyses five parameters were calculated 

following Jähnig et al. (2008): the “Number of natural microhabitats” (all natural 

substrate types excluding 'Technolithal') and “SWI of natural microhabitats” were used to 

describe substrate diversity, “SDI_micro” was applied to describe the spatial distribution 

of substrate diversity within transects. In addition the “Coefficients of variation of depth 

and flow” (CV_depth, CV_flow) were calculated.  
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Table 4-1 Hydromorphological parameters and indicators used in the following analyses 

Abbreviation Full name of parameter 

Section scale - Morphological survey 

1_Chan_geom Channel geometry 

1_Flow_patt Flow pattern 

1_Riv_dyn River dynamics 

2_Substrate Substrate characteristics 

2_Rbed_relief Riverbed relief 

2_Hyporh_int Hyporheic interstitial 

3_Connect Connectivity 

3_Structures Structures 

4_Bank Bank characteristics 

4_Species_veg Species composition of vegetation 

4_Rip_veg Riparian vegetation cover and age 

5_Buffer Width of riparian buffer zone 

5_Species_surr Species composition of vegetation of surroundings 

5_Veg_surr Vegetation cover and age of surroundings 

Mean_hymo Mean hymo survey evaluation (mean of 14 above parameters ) 

Dyn_feature_class Dynamic feature class (occurrence of sediment deposits and/or large wood) 

Width_variab Channel width variability 

Rip_veg_width Riparian vegetation width 

Reach scale - mesohabitats (occurrence of mesohabitats along transects) 

NMchanfeat_nat Number of natural channel features 

NMsubstr_nat Number of natural dominant substrate types 

Mainchan_share Share of main channel width of total transect length in % 

SWI_chanfeat Shannon-Wiener Diversity Index (SWI) of natural channel features  

SWI_substrate Shannon-Wiener Diversity Index (SWI) of natural substrate classes  

SDI_chanfeat Spatial Diversity Index (SDI) of channel features  

SDI_substrate Spatial Diversity Index (SDI) of substrate  

Reach scale - microhabitats (10-point measurements along transects) 

NMhabnat Number of natural microhabitats 

ShanMhabnat Shannon-Wiener Diversity Index (SWI) of natural microhabitats 

SDI_micro Spatial Diversity Index of substrate  

CV_depth Coefficient of variance of depth  

CD_flow Coefficient of variance of flow  
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Statistical analyses 

Most statistical analyses were performed in IBM SPSS Statistics Version 21. Some of the 

analyses (included in Annex C) were run in R version 3.1.1 and Statistica 8 software from 

StatSoft. All analyses were done using the response ratio (Osenberg et al. (1997) to 

quantify the effect of restoration (see Chapter 1.2). It was necessary to use this 

standardized effect size (instead of absolute values) to compare the effect of restoration 

on the different hydromorphological parameters because they were measured on 

different scales and in different units. Positive values denote a positive restoration effect, 

negative values a negative effect. 

We performed one sample Wilcoxon signed-rank Tests to identify hydromorphological 

parameters with median values significantly larger than zero, indicating a general 

positive effect of restoration. Mann Whitney U-Tests were used for any group 

comparisons and Wilcoxon-Matched pairs Tests for pairwise comparisons of large (R1) 

and small (R2) restoration projects. For all statistical analyses a significance level of 

p<0.05 was used. Boxplots were generated to illustrate differences in effect sizes 

between the hydromorphological parameters. Boxes indicate the interquartile range with 

whiskers to one quarter of the sample. Outliers (outlying more than one-and-a-half box 

length) are visualized with a circle, extreme values (beyond three box lengths) with an 

asterisk. 

First, we pooled R1 and R2 sections to identify general positive effects for the whole 

dataset regardless of restoration extent. We screened restoration effect values of all 

parameters investigated (Table 4-1) across all spatial scales (section scale, meso-, and 

microscale) to identify hydromorphological parameters with median values larger than 

zero, indicating an overall positive restoration effect.  

Second, we tested our first hypothesis (restoration effect on hydromorphological 

parameters is higher in larger vs. smaller restoration projects) by comparing effect 

values of large and small restored sections. We tested for group and pairwise differences 

of R1 vs. R2 sections, for group differences of different main restoration measure types 

(“widening”; n=9 to “all other measure types”; n=11), and for group differences of sand-

bed (n=8) vs. gravel-bed rivers (n=12; restored sections grouped according to the 

dominant substrate types). Moreover, we identified hydromorphological parameters 

which had median effect sizes significantly larger than zero, indicating a positive 

restoration effect for either R1 or R2 sections. We assumed that large restoration 

projects enhance dynamic processes within the river bed and riparian zone and are 

detectable in several floodplain features. 

Third, we tested our second hypothesis that enhancing macrohabitat conditions also 

improves meso- and microhabitats, i.e. the effect of restoration on hydromorphology at 

the river section scale is associated with effects on meso- and microscale habitat 

conditions. For this purpose effect sizes were analysed for each pair of restoration 

sections (R1 vs. R2). We started with pairwise comparisons of all parameters using 

Mann-Whitney U-Tests analysing if there was a significant difference between restored 

and degraded sections. We performed correlation analyses (Spearman`s rank coefficient 

ρ) of all effect values to identify correlations of hydromorphological parameters across 

the whole data set. 

Fourth, we tested our third hypothesis stating that hydromorphological parameters which 

portray the re-establishment of dynamic processes are best suited to identify restoration 
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effects. Within the survey data set we analysed all those survey evaluation results per 

restored section (n=8 per restored section - four survey reaches at left and right bank 

side; see Chapter 2.3) that led to a total number of 160 for the survey data set. Within 

the whole hydromorphological data set the survey data set was overbalanced with 14 

single parameters. Therefore, Spearman`s rank correlation coefficient ρ was calculated 

for the effect sizes of survey parameters. As the effect sizes showed high correlation and 

the Kaiser-Meyer-Olkin Test stated a significant relationship between all parameters 

(KMO-Index = 0.824), we performed a normed principal component analyses (PCA on 

correlation matrix) to determine main groups of hydromorphological survey parameters.  

The PCA (rotated VARIMAX – IBM SPSS Statistics Version 21) was calculated based on 

eigenvalues greater than 1, which led to three components. In a first run the third 

component was dominated by only a single parameter. The factor scores and the scree 

plot were used to state main components for variance explanation. In a second run we 

fixed the extracted factors to two. Reasoning forward from the results of the PCA, 

Spearman`s rank correlation coefficient ρ was calculated for these two PCA components 

to determine relationships to the 14 evaluation parameters and to fix key parameters 

within the survey data set.  

Additionally, two explanatory parameters (restoration length, years after restoration 

implementation) were correlated by Spearman`s rank correlation analyses to the PCA 

components 1 and 2 to identify possible relations.  

The general pattern of the PCA components (first and second PCA axis) to the 

explanatory parameters was visually checked and illustrated using scatter plots. A linear 

regression line was added to the plots to investigate the relationship of the components 

to these parameters. PCA results were illustrated by component plots and scatter plots.  
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4.3 Results 

Overall effect of restoration on hydromorphology (R1 and R2 pooled) 

Overall (pooling short and long restored sections), restoration had a positive effect on 

most survey and mesohabitat parameters but only on one parameter describing 

microhabitat conditions (Figure 4-1, one sample Wilcoxon signed-rank test p<0.05). 

Effect sizes varied considerably between survey, mesohabitat and microhabitat data, i.e. 

between the section, meso- and microscale. Restoration had the largest effect on the 

mesohabitat parameter “Share of main channel width of total transect length in % - 

Mainchan_share” (median 0.41, 25 % percentile -0.2). Within the survey data “Width of 

the riparian vegetation – Rip_veg_width” (median 0.35, 25 % percentile 0.1) showed the 

highest positive effect, whereas effect values of microhabitat data generally showed 

lower effect sizes. Within this group the effect size of the parameter “Coefficient of depth 

variance – CV_depth” showed highest values (median 0.18, 25 % percentile 0.00). The 

effect of restoration was lowest on microscale substrate conditions, which are especially 

important for macroinvertebrates (NMhabnat, ShanMhabnat, SDI_micro). 

 

Figure 4-1 Effect sizes (ln(R/D)) of all hydromorphological parameters of the 20 case 

study catchments. Median values significantly larger than zero are indicated by different 

letters (One sample Wilcoxon signed-rank test; p<0.05).  
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Differences of restoration effect in large and small projects (R1 vs. R2) 

There were no statistically significant differences between large (R1) and small (R2) 

restoration projects for none of the hydromorphological parameters investigated, neither 

within survey parameters nor within mesohabitat or microhabitat data (Wilcoxon-

Matched Pairs test, p>0.05). The box-plots, however, revealed a tendency for a higher 

effect of restoration on survey and mesohabitat parameters in large compared to the 

small restoration projects. Differences between large and small restoration projects were 

not detectable or minimal for the microhabitat parameters. 

Restoration had a greater effect on the following survey parameters in the large 

restoration projects (R1) compared to the small projects (R2), but the differences were 

not significant: the overall “mean of the hymo survey evaluation - Mean_hymo” and the 

parameter indicating “dynamic river features - Dyn_feature_class”. The effect sizes of the 

“width of the riparian vegetation – Rip_veg_width” did not differ between R1 and R2-

sections, whereas the effect sizes of the parameter “Channel width variability – 

width_variab” were higher in the R2 sections (Figure 4-2). One sample Wilcoxon signed-

rank tests showed median values significantly different to zero (p<0.05) for three survey 

parameters, which proved a positive restoration effect. 

Figure 4-2 Effect sizes (ln(R/D)) of the hydromorphological survey parameters of the 
large (R1) and small (R2) restoration projects. Median values significantly larger than 

zero are indicated by different letters (One sample Wilcoxon signed-rank test; p<0.05).  

 

At the mesohabitat level almost all parameters showed a tendency for higher restoration 

effect sizes in large restoration projects (R1; Figure 4-3). The sole exception was higher 

effect sizes of the “Shannon-Wiener Index of natural substrates - SWI_substrate” in R2 

sections. The maximum value was identified in large restoration projects for the 

parameter “Share of main channel width of total transect length in % - Mainchan_share” 
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(median 0.59, 25 % percentile 0.27). Six out of seven mesohabitat parameters showed 

median values significantly different from zero based on one sample Wilcoxon signed-

rank tests (p<0.05) in small restoration projects. Two parameters with median values 

significantly different to zero were identified at R1 sections. 

Remarkably, at the microhabitat level, only one parameter (“Coefficient of variance of 

depth – CV_depth“) showed higher effect sizes in larger restoration projects (R1) 

compared to small projects. This microhabitat parameter showed median values 

significantly different from zero based on one sample Wilcoxon signed-rank tests (p<0.05) 

for R1 and R2 sections. Additionally, differences between R1 and R2 sections were less 

pronounced within the microhabitat data.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Effect sizes (ln(R/D)) of the hydromorphological parameters at mesohabitat 
level (left) and microhabitat level (right) of the large (R1) and small (R2) restoration 

projects. Median values significantly larger than zero are indicated by different letters 
(One sample Wilcoxon signed-rank test; p<0.05).  

 

Restoration effect of different restoration measures  

We found significant differences (Mann-Whitney U-Test; p<0.05) between the two 

restoration measure type groups (“widening”; n=9 and “all other types”; n=11) for many 

survey and mesohabitat parameters. In contrast, none of the microhabitat parameters 

showed significant differences (Mann-Whitney U-Test; p>0.05) in effect sizes between 

the two groups.  

Figure 4-4 illustrates a higher restoration effect for all four survey parameters for the 

restoration measure type “widening” compared to the other restoration measure types. 

Three out of four survey parameters differed significantly between the restoration 

measure groups, whereas the parameter (“Mean hymo”), which is simply the mean of 14 

evaluation parameter, did not reflect a significantly larger restoration effect in widening 

projects.  
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Figure 4-4 Effect sizes (ln(R/D)) of the hydromorphological survey parameters 

differentiated by main restoration measure type. Significant differences between the 

groups are indicated by different letters - Mann-Whitney U-Test (p<0.05). 

 

 

Figure 4-5 Effect sizes (ln(R/D)) of the hydromorphological parameters at mesohabitat 

level (left) and microhabitat level (right) by main restoration measure type. Significant 
differences between the groups are indicated by different letters - Mann-Whitney U-Test 

(p<0.05).  
 

At the mesohabitat level, five parameters (“number of natural channel features”, 

“number of natural substrate types”, “share of main channel width”, “SWI of channel 

features” and “SDI of channel features”; for all p<0.05) out of seven showed a significant 

difference based on Mann-Whitney U-Tests between the two measure groups. Boxplots 

(Figure 4-5) illustrated higher restoration effects for restoration type “widening” and 

lower effect values for sections where other measure types were implemented.  
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None of the five microhabitat parameters showed a significant difference between the 

two restoration type groups based on Mann-Whitney U-Tests (p>0.05). The boxplots 

(see Figure 4-5) visualized higher effect sizes for the parameters “Number of natural 

microhabitats – Nmhabnat” and the “Shannon-Wiener Index of natural microhabitats – 

ShanMhabnat” for the restoration type “widening”. Both parameters indicated no 

restoration effect or even a slightly negative effect at sections where all other restoration 

measures were set. No trends were detectable for the other microhabitat parameters.  

 

Differences of restoration effect in gravel vs. sand-bed rivers  

If the investigated sections were grouped according to the dominant substrate type 

(gravel-bed rivers n=12, sand-bed rivers n=8), we identified significant differences 

(Mann-Whitney U-Test, p<0.05) in restoration effects between gravel-bed and sand-bed 

rivers for some mesohabitat parameters.  

The boxplots in Figure 4-6 illustrated a higher restoration effect for gravel-bed rivers 

than for sandy-ones for all survey parameters, but none of the differences were 

statistically significant (Mann-Whitney U-Test, p>0.05). Highest effect sizes (median 

0.45, 25% percentile -0.11) were documented for the survey parameter “width 

variability” for gravel-bed rivers.  

 

Figure 4-6 Restoration effect (ln(R/D)) on four survey parameters for different river 

types (gravel-bed vs. sand-bed rivers). 

 

At the mesohabitat level, we identified significantly different effect sizes of four 

parameters (“Number of natural channel features – Nmchanfeat_nat”, “Number of 

natural substrate– Nmsubstr_nat”, “Shannon-Wiener Diversity Index of natural channel 

features - SWI_chanfeat”, “Spatial Diversity Index of channel features - SDI_chanfeat”) 

between gravel-bed and sand-bed rivers, which were mainly triggered by negative effect 

sizes at sand-bed rivers (Mann-Whitney U-Tests, p<0.05).  



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 66 of 240  

 

Figure 4-7 Effect sizes (ln(R/D)) of the hydromorphological parameters at mesohabitat 
level (left) and microhabitat level (right) differentiated by main substrate type. 
Significant differences between the groups are indicated by different letters - Mann-
Whitney U-Test (p<0.05).  
 

Across all microhabitat data there was no significant difference (Mann-Whitney U-Tests, 

p>0.05) in restoration effects between gravel-bed rivers and sandy ones.  

Interestingly, the boxplots in Figure 4-7 (right) illustrated higher effect sizes of the 

microhabitat parameters “Coefficient of variance of depth” (CV_depth) and “Coefficient of 

variance of flow” (CV_flow) within sand-bed rivers.  

 

Are section-scale hydromorphological effects associated with effects on meso- 

and microscale habitat conditions?  

The results indicated that enhancing section-scale macrohabitat conditions also improved 

mesohabitat conditions but had only limited effect on microhabitats. This only partly 

supported our hypothesis that the effect of restoration on hydromorphology at the river 

section scale is associated with effects on meso- AND microscale habitat conditions. The 

missing relationship between section scale and microscale hydromorphological parameter 

does not imply that restoration had no effect on microhabitat conditions. It does, 

however, indicate that section-scale improvements were not necessarily associated with 

microscale habitat enhancement. 

Jointly analysing all 20 restored sections showed that several survey parameters 

describing section-scale hydromorphological conditions were correlated with reach-scale 

mesohabitat parameters. In contrast,  there was only one significant relation between 

survey and microhabitat parameters (Table 4-2). Moreover, none of the microhabitat 

parameters was correlated to one of the mesohabitat parameters.  
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Table 4-2 Spearman`s correlation coefficient ρ of the effect sizes (ln(R/D)) of the main 

hydromorphological parameters with ** p<0.01 and * p<0.05 and sample size n ranging 

from 16-20 depending on the availability of hydromorphological data at the 20 restored 

sections. 

 
Survey data Mesohabitat data Microhabitat data 
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Mean_hymo                 

Dyn_feature_class .23                

Width_variab .15 .29               

Rip_veg_width .06 .38 .58
*
              

NMchanfeat_nat .06 .48* .48 .43             

NMsubstr_nat .19 .42 .54* .44 .79**            

Mainchan_share .45* .16 .27 .18 .56
*
 .54*           

SWI_chanfeat .06 .41 .49 .39 .98** .74** .53*          

SWI_substrate .06 .23 .26 .51* .48 .87** .22 .46         

SDI_chanfeat .23 .46 .61* .30 .84** .67** .54* .84** .27        

SDI_substrate .16 .11 .15 -.03 .38 .64** .54
*
 .40 .53* .36       

NMhabnat .17 .51* .18 .29 .39 .28 .23 .40 .28 .43 .11      

ShanMhabnat .14 .38 .25 .23 .31 .19 .22 .34 .12 .38 .12 .93**     

SDI_micro -.18 -.18 -.10 .05 .15 .05 -.06 .20 .26 .04 .00 .61** .63**    

CV_depth -.31 .09 .23 .08 .19 .07 .16 .21 -.12 .19 .03 .23 .30 .31   

CV_flow -.07 -.03 .22 .00 .07 -.17 .13 .07 -.48 .18 -.20 .34 .31 .25 .61**  

 

More specifically: 

 A better overall hydromorphological state (“Mean-hymo”) at the section scale was 

related to a lower share of the main channel on total transect length 

(“Mainchan_share”). 

 A higher number of dynamic channel features (“Dyn_feat_class”) such as 

sediment deposits and large wood at the section scale increased the number of 

natural features and habitats at the meso- (“NMchanfeat_nat”) and microscale 

(“NMhabnat”). 

 A higher width variability (“Width_variab”) at the section scale increased the 

number of natural substrates (“NMsubstr_nat”) and the spatial diversity of 

channel features (“SDI_chanfeat”) at the mesoscale. 

 Wider riparian buffers (“Rip_veg_width”) at the section scale were related to a 

higher substrate diversity (“SWI_substrate”) at the mesoscale. 
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Table 4-3 Effect of restoration on the hydromorphological parameters for the 20 restored 

sections. Significant differences on the distribution of the parameters  of the restored 

sections compared to the corresponding degraded sections are shown (Mann-Whitney U-

Test, p <0.05). Significantly higher values (+) or significantly lower values (-) are 

indicated. 

 
Survey data Mesohabitat data Microhabitat data Summary 
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AT_R1  + + +  + + + + + +  + + + + + + + + 

CH_R1 +   + +  + +  +       + +  

CZ_R1 +    + + + + +   - -    + + - 

DK_R1 +         -     + + +  + 

DL_R1 +  +  + + - + + +  + +  + + + + + 

DM_R1 +    + + + +  +       + +  

FI_R1 +   -             +   

NL_R1 + +     +    - + + + + + + + + 

PL_R1 +      +         + + + + 

SE_R1 +  +  + + + +  +     +  + + + 

AT_R2     + + +  + + +  +   + + + + + 

CH_R2 +    + + + +  +      + + + + 

CZ_R2 + + + + + + + +  +       + +  

DK_R2                    

DL_R2       +       - +   + + 

DM_R2 +    + + - +  +  + +    + + + 

FI_R2       +        + +  + + 

NL_R2     +  - + + + -   + + +  + + 

PL_R2 +      +    +    + + + + + 

SE_R2 + +          + + +   +  + 

 

The detailed analysis of the 20 single restored sections revealed that microscale habitat 

diversity was significantly improved in 11 out of the 16 restored sections where section-

scale conditions were enhanced. However, substrate composition, which is especially 

important for macroinvertebrates, was significantly improved in only 6 out of the 16 

restored sections and in only 7 out of the total 20 restored sections investigated (Table 

4-3).  

Detailed results of all case study sections are given in the Annex C. 
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Identifying key hydromorphological parameters 

Section scale 

The effect sizes of the 14 hydromorphological survey parameters were highly correlated 

(Table 4-4). This hampered identifying single parameters that are best suited to quantify 

restoration success. Nonetheless, a Principal Component Analysis revealed that two 

groups of parameters can be distinguished which quantify the effect of restoration on 

aquatic and riparian/terrestrial hydromorphology, respectively (Figure 4-8). The two 

components explain more than half (57.2%) of the total variance in effect size values: 

 Component 1: Effect sizes of aquatic habitat parameters within the river channel 

(parameter groups P1_ - P3_: factor loading to Component 1 ranges from 0.849 

to 0.717). 

 Component 2: Effect sizes of terrestrial vegetation and habitat parameters 

describing river banks and adjacent floodplain areas (parameter group P4_ and 

parameter group P5_: factor loading to Component 2 ranges from 0.787 to 0. 

631). 

The survey parameter “bank characteristics“ (4_Bank) was dedicated to the aquatic 

parameter group but weakly loaded, visually isolated from the other aquatic parameters 

(Figure 4-8; factor loading to Component 1 of 0.667 and to Component 2 of 0.443).  

 
Figure 4-8 Component Plot of PCA on restoration effect values of 14 survey parameters 

(Parameter groups 1_ - 5_ – see Table 4-1). All parameters transformed to effect sizes 

(ln(R/D)). The small insert bar chart shows the corresponding eigenvalues of the 

analysis with the main axes` eigenvalues indicated in grey.  

 

 

 

Principal Component Analysis 
Rotation Method: Varimax with Kaiser 
Normalization 
Rotation converged in 3 iterations. 
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The hydromorphological survey parameters which were related best to the two 

components, and hence which are best suited as a single parameter to quantify 

restoration effect, were river bed relief (2_Rbed_relief) for the aquatic component 1 and 

riparian vegetation cover and age (4_Rip_veg) for the riparian/terrestrial component 2 

(Table 4-4).  

Table 4-4 Spearman`s correlation coefficient ρ of the effect sizes (ln(R/D)) of all 14 

hydromorphological survey parameters as well as from PCA generated Component 1 

(PCA extracted “Aquatic habitat parameter”) and Component 2 (PCA extracted 

“Terrestrial habitat parameter”) with ** p<0.01 and * p<0.05. 
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1_Chan_geom                 

1_Flow_patt .47
**
                

1_Riv_dyn .52
**
 .67

**
               

2_Substrate .54
**
 .40

**
 .46

**
              

2_Rbed_relief .75
**
 .48

**
 .55

**
 .51

**
             

2_Hyporh_int .34
**
 .18

*
 .36

**
 .50

**
 .46

**
            

3_Connectvty .44
**
 .50

**
 .64

**
 .30

**
 .54

**
 .27

**
           

3_Structures .53
**
 .50

**
 .59

**
 .34

**
 .50

**
 .22

**
 .64

**
          

4_Bank .52
**
 .44

**
 .55

**
 .43

**
 .53

**
 .26

**
 .59

**
 .56

**
         

4_Species_veg .16
*
 .07 .16 .30

**
 .13 .24

**
 .21

*
 .15 .47

**
        

4_Rip_veg .15 .13 .15 .22
**
 .08 -.01 .14 .21

*
 .45

**
 .68

**
       

5_Buffer -.03 .11 .14 .12 .04 -.03 .16 .09 .31
**
 .41

**
 .39

**
      

5_Species_surr .18
*
 .16 .19

*
 .17

*
 .11 -.06 .15 .09 .26

**
 .30

**
 .42

**
 .38

**
     

5_Veg_surr .09 .17
*
 .22

**
 .08 .12 .04 .18

*
 .10 .24

**
 .25

**
 .38

**
 .36

**
 .71

**
    

Component 1 
(aquatic) 

.81
**
 .71

**
 .80

**
 .65

**
 .83

**
 .54

**
 .72

**
 .74

**
 .68

**
 .17

*
 .10 .02 .11 .10   

Component 2 
(terrestrial) 

.03 .12 .17
*
 .20

*
 .03 .00 .19

*
 .13 .47

**
 .68

**
 .78

**
 .70

**
 .71

**
 .71

**
 .05  

 

Besides identifying those hydromorphological parameters which are best suited to 

quantify restoration success, we also identified project characteristics which affect 

restoration success by investigating relationships of both components with explanatory 

parameters (Table 4-5). The effect of restoration on aquatic and terrestrial habitat 

parameters increased with project age (Figure 4-9). Restoration length showed no effect 

either on aquatic or on terrestrial parameter groups.  
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Table 4-5 Spearman`s correlation coefficients ρ of Component 1 (“aquatic habitat 

parameter”) and Component 2 (“terrestrial habitat parameter”) performed on two 

explanatory parameters with ** p<0.01 and * p<0.05. 

 Component 1  

(aquatic habitat 

parameter)  

Component 2 

(riparian/terrestrial 

habitat parameter)  

Restoration length 0.091 0.066 

Years after restoration 

implementation 

0.273 ** 0.193 * 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9 Correlation of Component 1 (left - aquatic habitat parameter - Spearman`s 

ρ=0.273 p=0.00; R2
(lin)=0.13) and Component 2 (right – riparian/terrestrial habitat 

parameter - Spearman`s ρ=0.193 p=0.02; R2
(lin)=0.03) to the explanatory parameter 

“years after restoration implementation”  

 

Reach scale 

The reach-scale correlation matrix (Table 4-2) revealed high correlation within the 

mesohabitat and microhabitat data sets. Nonetheless, analyses of single restored 

sections showed a considerable variation of effect sizes within the data sets (Table 4-3). 

At the mesohabitat scale the parameter “Share of main channel width of total transect – 

Mainchan_share” as well as the “Number of natural channel features – NMchanfeat_nat” 

proved positive effects in many cases. Within the microhabitat parameters, restoration 

effects were less obvious, but the “Coefficients of variances of depth and flow – 

CV_depth and CV_flow”) revealed positive effects. Especially for sand-bed rivers, positive 

restoration effects were determined within the microhabitat data set additionally to the 

other hydromorphological parameters.  
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4.4 Discussion 

The effect of restoration on hydromorphology was mapped and assessed using the same 

methods in all 20 restoration projects investigated. Nevertheless the twenty catchments 

in nine European countries differed in respect to their own restoration history, and were 

individually affected by large-scale pressures. At most restored sections, the channel and 

floodplain heterogeneity were initially increased by specific measures.  

Although this makes drawing a general conclusion difficult, we were able to identify some 

general trends Overall, we found that restoration increased habitat diversity through 

changes in channel morphology (compared to the degraded sections 

upstream).Nonetheless, we identified considerable differences in restoration effect sizes 

between sections, restoration measures, river types and spatial scales. 

 

Differences in restoration effect  

Restoration effect sizes showed highest values within the survey and mesohabitat 

parameters, while the effect of restoration on aquatic microhabitats was less pronounced. 

The “Number of natural microhabitats” showed the lowest effect sizes, similar to the 

findings of Jähnig et al. (2009). Moreover, the effect of restoration was also especially 

low on microscale substrate composition, which is of special importance for 

macroinvertebrates (diversity of microhabitats and spatial diversity of substrates). This 

might explain why we found no effect of restoration on aquatic macroinvertebrates (see 

Chapter 5). 

We had to reject our first hypothesis that the effect of restoration on hydromorphology 

increases with restoration extent and is higher in larger restoration projects compared to 

smaller projects by enhancing dynamic processes and mitigating large-scale pressures. 

Overall, the effect of restoration on hydromorphology did not significantly differ between 

large (R1) and small (R2) restoration projects for any of the hydromorphological 

parameters investigated. This result is consistent with the findings of the overview 

analysis for the aquatic and floodplain-inhabiting organism groups (Chapter 3, Hering et 

al. in prep). However, there was a tendency for higher effect sizes of the survey and 

mesohabitat parameters. The effect sizes of three out of four analysed survey 

parameters were higher in large restoration projects, but the difference was not 

significant. At the mesohabitat scale, all parameters showed higher restoration effect in 

large restoration projects, indicating a higher effect on mesohabitat diversity. Especially 

the dominance of the main channel was significantly reduced in large restoration projects. 

Other channel features such as islands, banks and bars became more frequent, and the 

restoration measures also increased heterogeneity along the cross section of the river. At 

the microhabitat scale, only one out of five parameters showed higher effect sizes in 

larger restoration projects.  

Differentiating the data set according to the main restoration measure types revealed a 

decrease of restoration effect from the restoration measure type “widening” as opposed 

to all other restoration measure types. The measure type “widening” comprises mainly 

the removal of bank enforcement and the creation of secondary channels which initialize 

dynamic processes and enables higher diversity of flow velocities and depths. These 

processes were statistically proven with a high correlation to the occurrence of 

unvegetated sediment banks and / or islands with early successional stages of vegetation 
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as well as woody debris within the reaches (survey parameter “dynamic features class”). 

Effect sizes of survey and mesohabitat parameters differed significantly between the 

restoration type riverbed “widening” and the other measure types. This result supports 

the call for restoration measures at larger extent (Bernhardt & Palmer 2011, Mueller et al. 

2014, Schmutz et al 2014) and going beyond the instream scale. 

When we grouped the whole data set according to the dominant substrate type, the box-

plots illustrated a higher restoration effect on survey and mesohabitat parameters for 

gravel-bed rivers than for sandy ones. The differences were significant at the 

mesohabitat level. Some meso- and microhabitat parameters showed negative 

restoration effect sizes for sand-bed rivers and led to a further question: did we measure 

appropriate parameters for this river type? Brierley et al. (2010) stated that, in gravel-

bed systems, heterogeneity is shaped by complex sediment and flow interactions, which 

are more strongly reflected in the applied assessment methods. In contrast, 

heterogeneity in sand-bed rivers is far more dependent upon riparian vegetation and the 

presence of wood. Remarkably, the effect sizes for sand-bed rivers were highest at the 

microhabitat scale for the parameter “variances of flow”. This result supports additionally 

the urgent need for carefully designed restoration and monitoring programs for sand-bed 

rivers.  

Physical habitats are most strongly determined by processes at larger spatial scales 

(Frissel et al. 1986, Brierley & Fryirs 2005, Habersack & Piegay 2007). Changes in 

sediment and hydrological regime should be included in restoration monitoring. This 

implies comprehensive catchment data sets, which were not available in our study. 

Temporally changing hydrological conditions due to flow regime variability between years 

must be considered (Brierley & Fryirs 2005, Palmer et al. 2010, Belletti et al. 2014) and 

should be incorporated in future monitoring designs. Habitat heterogeneity in the 

floodplain, for example, is induced by floods, and the maintenance of dynamic floodplain 

ecosystems over time depends on sediment relocation by floods (Tockner et al. 2009, 

Habersack & Kreisler 2013).  

The time between the implementation of restoration measures and the field sampling in 

2012/2013 ranged from 1-16 years. There was a discernible time effect in the data set. 

This demonstrates larger effect sizes for the aquatic as well as for the terrestrial habitat 

parameters at sections with higher restoration project age.  

Overall, our findings revealed that restoration effects on hydromorphological parameters 

gradually decreased from section scale to reach scale and from mesohabitat to 

microhabitat level.  

 

Relation of effect sizes of hydromorphological parameters  

Our second hypothesis (enhancing macrohabitat conditions in turn also improves meso- 

and microhabitats) was only partly supported by detailed analyses of each restoration 

project.   

Positive restoration effects were related across the hydromorphological data set, 

indicating that enhanced dynamic processes could be identified by parameters at the 

section scale and further proven by positive effects on mesohabitat parameters. This was 

not always the case with microhabitat parameters.  
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As stated above, restoration in general had the lowest effect on microhabitat parameters 

but there were large differences between the restoration projects. For example, 

restoration indeed had a positive effect on microhabitat parameters in two large 

restoration projects in sand-bed rivers (NL_R1, DL_R1) but this was only partly related to 

significant effects on survey or mesohabitat parameters.  

Those restored sections where only in-stream measures were implemented showed the 

lowest restoration effects on hydromorphological parameters at all analysed scales. In 

one of these projects, restoration had no effect on none of the hydromorphological 

parameters at any of the spatial scales considered (DK_R2 – Denmark/Stora - sand-bed 

river- main restoration measure: gravel introduction). This is consistent with findings of 

Mueller et al. (2014), who reported only immediate short-term improvements of habitat 

condition if only minor or single measures were implemented (for example if addition of 

gravel was the only restoration technique at restored reaches).  

 

Key hydromorphological parameters  

Our third hypothesis (hydromorphological parameters mirroring the re-establishment of 

dynamic processes are best suited to identify restoration effects) was tested mainly by 

statistical analyses on the survey parameter set. The 14 morphological evaluation 

parameters investigated in the survey are commonly used and CEN-compliant (CEN 

2002). Very similar approaches can be found throughout Europe and worldwide (Raven 

et al. 1997, NERI 1999, LAWA 2000, Parsons et al. 2004, EPA 2004, Belletti et al. 2014).  

The correlation matrix revealed that most of the survey evaluation parameters were 

highly correlated to each other. Using PCA we identified two main components within the 

whole data set: Component 1 of aquatic habitat parameters and Component 2 of 

terrestrial riparian and floodplain vegetation parameters.  

Especially Component 1 revealed high restoration effects for many restored sections that 

were not identified with the “Mean hymo survey evaluation” (Mean_hymo), which is 

simply the mean of all 14 parameters.  

Based on our findings, hydromorphological key indicators for identifying restoration 

success should include parameters at larger spatial scales that consider or reflect 

processes such as bank erosion and channel adjustments.  

A further descriptive morphological parameter - “dynamic features class” - which 

incorporates channel patterns showed high correlation to the effect sizes of aquatic 

habitat parameters. We analysed unvegetated dynamic patches and/or bars with early 

successional stages of vegetation that prove renewing successional processes were 

present. But still, we used the occurrence or absence of specific features in a static visual 

assessment as an indicator of processes. The elaboration of parameters mirroring 

dynamic processes is still essential.  

Corresponding to the needs of a morphological assessment (Belletti et al. 2014), our 

study went beyond investigating and analysing only the river channel and the riparian 

zones. We also included parameters within the riparian buffer zone and the adjacent area.  

In many of the restored sections the “width of riparian vegetation” was a good indicator 

of a high positive restoration effect. However, terrestrial habitat parameters of the 

adjacent floodplain showed significant restoration effects in only a few cases.  
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There is a further need to develop terrestrial parameters to assess restoration effects 

adequately towards the lateral dimension. The survey parameters on riparian and 

terrestrial vegetation used in this study did not reflect restoration effects sufficiently 

within the floodplain. For this purpose a restoration monitoring should incorporate the 

use of digital maps, remotely sensed data and GIS analyses. These approaches allow 

larger spatial scales of analyses focusing on habitat features and the vegetation 

composition of the floodplain (Smith et al. 2013).  

At the mesohabitat scale, the parameter “Share of main channel width of total transect – 

Mainchan_share” as well as the “Number of natural channel features – “NMchanfeat_nat” 

proved positive effects in many cases. Diversity Indices such as “Shannon-Wiener Index 

or Spatial diversity index” additionally reflect positive effects.  

Within the microhabitat parameters, restoration effects were less obvious, but the 

“Coefficients of variances of depth and flow” (CV_depth and CV_flow) revealed positive 

effects. Especially for sand-bed rivers, we determined positive restoration effects within 

the microhabitat data set beyond the other hydromorphological parameters.  

Additional to parameters at larger spatial scales, diversity indices and parameters related 

to the occurrence of natural channel features and their extent, as well as variances of 

flow and depth at the microhabitat level, reflect morphological diversity at the reach 

scale.  

These results revealed the need to incorporate adequate hydromorphological parameters 

at different scales for restoration monitoring and highlighted the demand to consider 

different river types as well as measure types. These findings support the conclusions of 

Pander & Geist (2013), who underlined that parameters at all scales should be included 

in post-restoration monitoring schemes. 

Morphological characteristics and conditions help explain organism distributions and play 

a key role for understanding ecosystem functioning. Accordingly, our analyses provide 

the basis for establishing links between morphology, ecological condition and 

communities.  
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5. Macroinvertebrates 

5.1 Introduction 

Many river restoration projects have been carried out in Europe, aiming at restoring 

natural flow patterns and enhancement of habitat heterogeneity to increase biodiversity. 

Nonetheless, after decades of restoration their remains a lack of evidence for strong and 

long-term positive ecological effects of these measures on macroinvertebrates (e.g. 

Palmer et al. 2010; Feld et al. 2011; Friberg et al. 2014). Even where the ecological 

effects of hydromorphological restorations have been scientifically assessed, effects on 

invertebrates often seem weak. This could be the result of, amongst other factors, an 

insufficient extent of restoration, or a mismatch between the measures applied and the 

requirements of the targeted organism groups. The scale of most restoration projects 

carried out to date has been small in comparison to total catchment size, generally not 

exceeding a river length of several kilometers. The type of restoration measures applied 

in these reaches varies considerably, ranging from measures aiming at instream habitat 

improvements to channel widening and floodplain reconnection. 

To improve understanding of the effectiveness of hydromorphological restoration 

measures on macroinvertebrates, a standardized field study was carried out in 

catchments of mid-sized lowland and mountain rivers throughout Europe. We 

investigated ten pairs of one large (R1) and a similar but small (R2) restoration project. 

In contrast to the R1-sections, the R2 sections were shorter, and/or restoration was 

performed with less “intensity” (i.e. a lower intensity of restoration effort, fewer 

parameters addressed, etc.). The restoration effect was quantified by comparing each 

restored river section to a nearby non-restored, i.e. still degraded section (see Chapter 

1.2 for more information on the general study design). Multiple metrics characterising 

macroinvertebrate community diversity, functional traits and taxonomic composition 

were assessed, including total taxon richness and diversity, richness of flow indicators 

(rheophiles) and indicators of habitat heterogeneity (diversity of macroinvertebrate 

habitat preferences).  These metrics were related to (i) changes in habitat availability 

and/or quality as a result of restoration, (ii) differences in restoration type and extent. 

It was expected that if hydromorphological river restoration results in either a more 

stable flow regime or an increase in the number or heterogeneity of habitat types, this 

will have positive effects on macroinvertebrate indicators of flow and habitat 

heterogeneity. Because total richness and diversity are more general measures, which 

could be influenced by a variety of environmental or biological factors, we did not expect 

effects for these metrics. Furthermore, we expected that the specific restoration 

measures applied, the time since restoration, and the size or extent of the restored 

section would all influence the magnitude macroinvertebrate responses. 

5.2 Methods 

Study sections and sampling methods 

The study sections and reaches as well as sampling methods for the macroinvertebrates 

are described in Annex B and Chapter 2.4. Macroinvertebrate samples were taken in 19 

degraded and 19 restored sections out of the 20 paired degraded / restored sections. 
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Diversity indices, ecological preferences and effect sizes 

As not all macroinvertebrate specimens collected were identified to the same taxonomic 

level (for example early instars of insects), an adjustment procedure was applied (e.g. 

Vlek et al., 2004). This procedure reduced bias in the subsequent analyses due to 

differences in taxonomic resolution by grouping to a higher taxonomical level (Schmidt-

Kloiber & Nijboer, 2004).  

Total macroinvertebrate taxon richness and Shannon Wiener diversity (Shannon & 

Weaver, 1949) were calculated for each section sampled based on the adjusted data. 

Current and habitat preferences were derived from the freshwaterecology.info database 

(Schmidt-Kloiber & Hering, 2012). For each sample the number of taxa classified as 

‘rheophilic’ or ‘rheobiont’, was counted. Furthermore, the diversity of habitat preferences 

in a section was calculated based on the Shannon Wiener diversity of the sum of all 

taxon preference scores per sample. Finally, to determine overall community change, the 

Euclidian distance between each of the paired restored-degraded sections was calculated.  

To quantify the effects of restoration on macroinvertebrate metrics, the effect sizes for 

total richness and diversity, number of taxa preferring a high current velocity and 

diversity of habitat preferences were calculated. We used (i) the pairwise calculation of 

the difference between each pair of restored and degraded section, and (ii) a modified 

version of the response ratio    developed by Osenberg et al. (1997). The original 

formula given by Osenberg et al. (1997) is: 

     (
  

  
), 

whereas XR is the species richness or diversity of the restored section and XD of the non-

restored section. Thereby, values > 0 denote a positive effect (e.g. increase of richness 

or diversity), and negative values a negative effect. This formula was not appropriate for 

our data (e.g., for diversity or the proportion of species with habitat preferences) as we 

had 0-values for the degraded sections and could, therefore, not calculate the response 

ratio. Instead, we calculated a modified response ratio    according to the following 

formula: 

      (
      

      
). 

 

Environmental variables  

Several environmental variables related to river, habitat and restoration project 

characteristics were used (Table 5-1). River characteristics comprised the altitude of the 

restored reach, slope of the restored channel, mean discharge, mean channel width and 

overall bed coarseness based on the dominant substrate of the riverbed. Project 

characteristics were the extent of restoration (large vs. small restoration projects and the 

type of restoration measure applied). Two groups of restoration measures were 

distinguished: measures which primarily aimed at widening (usually affecting aquatic, 

semi-terrestrial, and terrestrial areas) and projects which applied other, less extensive 

measures mainly affecting the river channel itself (instream measures, flow restoration, 

remeandering, anastomosing). Habitat characteristics included the mean current velocity 

of the river section, the number of number of natural substrates present (excluding 

technolithal) and its diversity based on the Shannon-Wiener index. Besides the substrate 
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diversity its spatial arrangement was included by calculating the Spatial Diversity Index 

(SDI;  Fortin et al., 1999, Jähnig et al. 2008). 

Table 5-1 Environmental variables classified according to river, project and habitat 

characteristics of the 200-m river sections sampled. 

Variable class Variable 

River characteristics Altitude (m above sea-level) 

 Slope (%) 

 Discharge (m3/s) 

 River width (m) 

 Bed coarseness (cobbles-gravel or sand bed) 

Project characteristics Restoration extent (large vs. small restoration projects) 

 Restoration type / measure (widening, other) 

 Time since restoration (year) 

Habitat characteristics Current velocity (mean value m/s) 

Presence natural substrates [#] 

Natural substrate diversity  

[Shannon–Wiener index] 

Spatial distribution of substrate diversity [Spatial Diversity Index] 

 Presence of natural substrates (total number) 

 Natural substrate diversity (Shannon-Wiener index)  

[Shannon–Wiener index]  Spatial distribution of substrate diversity (Spatial Diversity Index) 

 

Data analysis  

First, it was tested if there was an overall positive effect of restoration on 

macroinvertebrate taxon richness and diversity by comparing the richness and diversity 

of all restored (R) and all degraded (D) river sections (group and pairwise comparison of 

R vs. D). Second, it was tested if the effect of restoration depended on restoration extent 

by comparing richness and diversity of all large (R1) and all small (R2) restoration 

projects using absolute values (group and pairwise comparison of R1 vs. R2). 

Furthermore, effects sizes based on richness and diversity were compared, expressed as 

the absolute difference between the restored and degraded sections as well as the 

response ratio modified after Osenberg et al. (1997). Both an overall comparison of 

effect sizes and a comparison taking differences in river type into account were carried 

out. Third, we tested if effect sizes differ between projects which mainly aimed at river 

widening (usually affecting aquatic, semi-terrestrial, and terrestrial areas) and projects 

which applied other, less extensive measures mainly affecting the river channel itself 

(instream measures, flow restoration, remeandering, anastomosing, similar to the 

grouping of measures in Chapter 8 on ground beetles). Significance testing was carried 

out in IBM SPSS for Windows (version 19) using Mann Whitney U tests, t-tests, Kruskal-

Wallis tests and One-Way ANOVAs.  

The next step was to investigate in more detail which restoration and habitat 

characteristics, alone or in combination, were best explaining the variation in effect sizes 

for all metrics used in the study. To parameterize the typological differences among 

European rivers, we combined river characteristics (bedtype, slope, altitude, discharge, 

width) as superordinated variables into one parameter. Thereby, we extracted a 

composite descriptor using principal components analysis (PCA) which was used for 

further analyses (Table 5-2). Principal components that explained a significant non-
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random part of the variation were retained (broken-stick model; Jackson 1993), which in 

this case was only principal component 1 (eigenvalue = 13.7, Broken-stick eigenvalue = 

10.2, 61.3% of total variance explained). Correlations of each parameter with the first 

principal component (PC-1) were calculated to derive its main descriptors, which turned 

out to be a combination of coarseness of the riverbed, altitude and slope. Sample scores 

of the sites on the significant principal component were used as a new quantitative 

variable in the subsequent ordinations, which here could be defined as the hydraulic 

gradient, ranging from coarse-bed, high gradient rivers to low gradient rivers with a sand 

bed. Habitat characteristics were represented by their Osenberg response ratios. 

Table 5-2 Results of the principal component analysis. Based on the loadings of each 

variable on the significant principal components (PC) expressed as Pearson correlation 

coefficients, it main descriptors (r > 0.8; in bold) were determined; significance of the 

principal components: * significant, n.s. not significant. 

River characteristics and PC parameters 
Pearson correlation coefficient (r) 

 PC-1 PC-2 PC-3 

Altitude (m above sea-level) -0.8 -0.5 0.2 

Slope (%) -0.8 0.6 -0.0 

Discharge (m3/s) -0.5 0.3 0.7 

Channel width (m) -0.5 0.3 0.6 

Bed coarseness (gravel vs. sand-bed) -0.8 -0.1 -0.5 

Eigenvalue 13.7* 4.4ns 2.7ns 

Broken-stick eigenvalue 10.2 5.7 3.5 

% of total variance explained 61.3 19.7 11.9 

 

Spearman rank order correlation was used to investigate bivariate relationships between 

the response variables and different predictors. Subsequently, the relationships between 

the effect sizes of the macroinvertebrate metrics and a selection of river, habitat and 

restoration project characteristics (Table 5-3) were analysed using redundancy analysis 

(RDA). To be able to determine which part of the variation in effect sizes can uniquely be 

attributed to changes in certain environmental variables and which part is shared with 

other variables, variance partitioning was applied. This is important, since it enables us 

to show to what extent the effects of the different groups of variables are related to each 

other. Forward selection (Monte Carlo permutation test, 9999 permutations, P values 

Holm corrected) was used to retain only those variables which significantly contributed to 

the variance explained by each of the groups. Ordinations were carried out using Canoco 

5.03 (Ter Braak & Šmilauer, 2012). 
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Table 5-3 Classification and description of parameter types used in the redundancy 

analyses to analyse the relationship between macroinvertebrate metrics (response 

variables) and environmental characteristics (explanatory variables); R = restored 

reach, D = degraded reach; response ratio refers to the modified response ratio after 

Osenberg et al. (1997). 

 
 Parameter type Parameter description Value calculated as 

R
e
s
p
o
n
s
e
 v

a
ri

a
b
le

s
 

Macroinvertebrate 
metrics 

Richness Total taxon richness Response ratio  

Diversity Shannon-Wiener index value Response ratio 

Community 
composition 

Taxon composition samples 
Euclidian distance 
between R and D 

Flow preference 
Number of rheophilic + 

rheobiont taxa 
Response ratio 

Habitat 

preference 

Habitat preference diversity 

(Shannon–Wiener index) 
Response ratio 

E
x
p
la

n
a
to

ry
 v

a
ri

a
b
le

s
 

River 
characteristics 

River 
characteristics 

PC-1 (hydraulic gradient) R 

Restoration 
characteristics 

Restoration 
Restoration extent 
(large/small) 

R 

Restoration 
Restoration measure 
(widening/other) 

R 

Restoration Time since restoration (year) R 

Habitat 
characteristics 

Flow Mean current velocity Response ratio 

Habitat richness 
Number of natural substrates 
(#) 

Response ratio 

Habitat diversity 
Natural substrate diversity  
(Shannon–Wiener index) 

Response ratio 

Habitat diversity 
Spatial distribution of 
substrate diversity  
(Spatial Diversity Index) 

Response ratio 
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5.3 Results 

Overall effect of restoration on macroinvertebrates (R1 and R2 pooled) 

Overall (pooling large and small restoration projects), there was no significant difference 

between restored and degraded sections in respect to taxon richness or diversity (Mann-

Whitney U test p > 0.41, n = 19). Mean richness was about 35 taxa and mean Shannon-

Wiener diversity about 2.3 in both degraded and restored sections (Table 5-4).  

Moreover, restoration had no overall positive effect on richness or diversity when 

restored sections were compared to the corresponding degraded sections for both 

methods used to quantify restoration effect size (the difference of the 19 pairs of 

restored and corresponding degraded sections based on absolute values as well as the 

relative response ratios), i.e. mean effect sizes were not different from zero (t-test, p > 

0.27). Variability was especially high for macroinvertebrate richness, demonstrating that 

some projects indeed increased the number of taxa but other even lead to a substantial 

decrease in species richness. 

Table 5-4 Macroinvertebrate richness and diversity in restored and degraded sections of 

rivers, for all rivers combined and for rivers which differ in restoration extent. 

 
Taxon richness Shannon-Wiener 

diversity 

n 

 Mean SD Mean SD  

R1 and R2 pooled      

R 35.3 8.3 2.24 0.35 19 

D 35.1 11.0 2.36 0.48 19 

Large projects      

R1 34.1 9.3 2.30 0.34 10 

D1 33.4 11.4 2.25 0.55 10 

Small projects      

R2 36.6 7.3 2.17 0.37 9 

D2 36.9 10.9 2.49 0.37 9 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: Effect of restoration on macroinvertebrate richness and diversity. a.) and b.) 

absolute values of difference R minus D, c.) relative response ratio ln(R/D). 
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Differences of restoration effect in large and small projects (R1 vs. R2) 

Group comparison did not reveal significant differences of richness and diversity between 

the four groups of R1 (large restoration projects), R2 (small restoration projects), the 

degraded sections (D1 and D2) (One-way ANOVA, richness F3,37 = 2.95, p = 0.829; 

diversity F3,37 = 0.889, P = 0.456, Table 5-4). 

Similarly, pairwise calculated effect sizes, expressed as the absolute difference between 

the restored and degraded sections and the relative difference (Osenberg response ratio) 

showed no significant effect of restoration on richness and diversity, i.e. mean values 

were not significantly different from zero, neither for the large nor for the small 

restoration projects (t-tests, p > 0.05, n=10 and n=9, respectively), except for the 

significant negative effect of restoration on diversity in the small restoration projects 

(p < 0.05, Figure 5-2b). Moreover, effect sizes of richness and diversity were not 

significantly different between large and small restoration projects, neither for comparing 

the two groups R1 and R2 (Mann-Whitney U test, p > 0.07, n=19), nor for a paired 

comparison (R1 compared to corresponding R2 section, Wilcoxon-Matches Pairs test, 

p >0.14, n= 9). 

 

Figure 5-2: Effect of restoration on macroinvertebrate richness and diversity for large 

(R1) and small (R2) restoration projects,. a.) and b.) absolute values of difference R 

minus D, c.) d.) relative response ratio ln(R/D). 

 

Differences of restoration effect in river types (gravel- vs. sand-bed rivers) 

There were no significant differences of macroinvertebrate richness and diversity 

between gravel-bed and sand-bed rivers (Mann-Whitney U test, p > 0.50). However, 

especially richness effect sizes showed a tendency for a larger effect of restoration in 

gravel-bed rivers (n=12) compared to sand-bed rivers (n=7), i.e. low versus high 

gradient rivers (Figure 5-3a).  
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Figure 5-3: Effect of restoration on macroinvertebrate richness in sand-bed vs. gravel-

bed rivers (a) and widening vs. other projects (b) using the absolute difference between 

richness values of restored and degraded sections as effect size. 

 

General relationship of macroinvertebrate richness and diversity and the type of 

restoration measures 

There were no significant differences of macroinvertebrate richness and diversity 

between restoration projects which mainly applied river widening as a main measure and 

other measures (Mann-Whitney U test, p > 0.22). However, richness effect sizes showed 

a tendency for a larger effect of restoration in projects which aimed at river widening 

(n=11) compared to projects which mainly applied other, less extensive measures mainly 

affecting the river channel itself (instream measures, flow restoration, remeandering, 

anastomosing, n=8).  

 

Relationship between biological metrics and environmental variables 

No significant correlations between the effect sizes for total richness and diversity, 

number of rheophilic species and diversity of habitat preferences within the assemblage 

were found (Table 5-5). Furthermore, the variation in effect sizes of neither the 

macroinvertebrate metrics nor the Euclidian distance representing the change in 

community composition could be explained by any of the environmental variables 

investigated (Table 5-6). This indicated that the direction and magnitude of the 

differences in the macroinvertebrate metrics between the restored and degraded sections 

was not related to differences in the environmental variables measured.  
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Table 5-5 Correlation coefficients (Spearman rank order) between the effect size 

(Osenberg-ratio; n =19) of macroinvertebrate variables (total macroinvertebrate taxon 

richness and Shannon-Wiener diversity) and predictor variables. None of the correlations 

was significant (P<0.05). Richness = total taxon richness, Diversity = Shannon-Wiener 

diversity, Rheo = number of rheophilic + rheobiont taxa, Habpref = Habitat preference 

diversity. 

Predictor group Predictor Richness Diversity Rheo Habpref 

River typology Altitude 0.269 0.011 -0.101 -0.254 

Slope 0.212 0.042 -0.229 -0.370 

 Discharge 0.297 0.183 -0.082 -0.447 

 Width 0.393 0.181 -0.162 -0.499 

 River type (gravel-sand) 0.120 0.159 -0.172 -0.279 

 Typology PC1* -0.291 -0.167 0.185 0.367 

      

Restoration Restoration extent 0.096 0.404 0.127 -0.116 

Restoration age 0.332 0.151 -0.109 -0.004 

 Restoration length 0.175 0.261 0.317 0.050 

      

Water quality PO4 -0.155 -0.228 0.234 0.081 

NO3 0.137 -0.054 -0.092 0.228 

 NH4 -0.278 -0.232 0.302 0.269 

      

Catchment land 

use cover 

Artificial surfaces 0.186 0.175 -0.063 0.299 

Agricultural areas 0.061 -0.142 0.145 0.185 

 Forest and seminatural areas -0.011 0.161 -0.137 -0.239 

 Wetlands -0.342 -0.101 -0.105 -0.204 

 Waterbodies -0.236 -0.075 0.137 -0.109 

      

Microhabitat 

characteristics 

Current velocity 0.356 0.195 0.144 0.096 

Number of natural habitats 0.318 0.206 0.019 -0.151 

 Natural substrate diversity 0.444 0.288 -0.026 -0.158 

 Spatial distribution of substrate 

diversity  

0.196 0.232 -0.144 -0.312 

*see Table 5-2 
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Table 5-6 Significance testing of macroinvertebrate metrics based on redundancy 

analyses with all environmental variables included.  

Metric F P 

Taxon richness 1.1 0.306 

Taxon diversity <0.1 0.959 

Assemblage composition 1.2 0.456 

Number of rheophilic + rheobiont taxa 2.2 0.160 

Habitat preference diversity 0.6 0.438 

 

Effect of hydromorphological changes on macroinvertebrates 

The effect on macroinvertebrate richness was significantly higher in projects where 

restoration measures increased microhabitat diversity (Spearman rank correlation, 

p < 0.05, n = 19). Moreover, excluding one single outlier resulted in significant 

correlations between the effect of restoration on macroinvertebrate richness as well as 

diversity and its effect on two parameters describing substrate conditions at the 

microhabitat scale (response ratio of Shannon-Wiener diversity of microhabitats and total 

number of microhabitats, see results on hydromorphology in Chapter 4) (Spearman rank 

correlation, p < 0.05, n = 18).  

 

Figure 5-4: Correlation between the effect of restoration on macroinvertebrate richness 

and its effect on microhabitat diversity (response ratio of the Shannon-Wiener diversity 

index of natural microhabitats).  

The strongest correlation was found between the effect size of macroinvertebrate 

richness and the response ratio of the Shannon-Wiener diversity of microhabitats 

(Spearman rank correlation, rho = 0.74, p < 0.001, n = 18, Figure 5-4). No such 

correlation was found between macroinvertebrate metrics and hydromorphological 

parameters describing macro- or mesohabitats. 
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5.4 Discussion 

No effects of restoration on the macroinvertebrate metrics were detected based on the 

pairwise comparison of restored and upstream non-restored river sections throughout 

Europe; neither on total richness, diversity or assemblage composition, nor on a subset 

of assemblage which should be, at least in theory, indicative of rivers of a good ecological 

quality. No effects could be detected for rheophiles, which are regarded as indicators of 

natural flow regimes and based on the diversity of habitat preferences within the 

assemblage, indicative of high habitat diversity and or heterogeneity. These results are in 

line with other restoration studies, which have already indicated that hydromorphological 

restoration measures which increase structural heterogeneity or restore natural flow 

regimes do not necessarily promote macroinvertebrate biodiversity, even when habitat 

changes are large (Lepori et al., 2005; Haase et al. 2013; Friberg et al. 2014).  

However, macroinvertebrate richness and diversity was correlated with microhabitat 

diversity (Figure 5-4). Since microhabitat conditions were not significantly improved in 

the restored sections investigated in this study, and the effect of restoration was 

especially low on substrate diversity (see Chapter 4), the low effect of restoration on 

macroinvertebrates might mainly reflect the low effect of the studied restorations on 

microhabitat diversity (see results on hydromorphological effects in Chapter 4). 

Accordingly, while restoration projects like widening are visually appealing and increase 

macro- and mesohabitat diversity (Chapter 4), they may generally not increasing 

microhabitat diversity relevant for macroinvertebrates and species diversity. Overall, in 

contrast to other studies which concluded that restoring habitat diversity does not 

promote invertebrate diversity (e.g. Palmer et al. 2010), our results indicated that reach-

scale restoration can indeed increase species richness and diversity, but that this is 

dependant on creation of ecologically relevant microhabitats. The scatterplot (Figure 5-4) 

suggested that decreasing microhabitat diversity had a negative effect and even slightly 

increasing might have a strong positive effect on macroinvertebrate richness. However, 

further increasing microhabitat diversity did not further increase richness, which 

indicated that other factors might constrain the effect of restoration (e.g. depleted 

species pools for re-colonization, low water-quality). 

Such factors which might have constrained the effect of restoration include the impact of 

landscape-level stressors not mitigated by the restoraton measures applied (Palmer et al. 

2010; Haase et al. 2013), or local stressors which interfered with the paired design of 

our study. The scale at which such stressors operate can range from microhabitat (e.g. 

clogging of interstitial spaces of coarse substrate by silt, missing habitat components 

such has dead wood), to mesohabitat (large water temperature fluctuations because of 

lack of shading by riparian trees) to catchment scale (e.g. eutrophication, impact of 

pesticides or other harmful substances). It is important to note that stressors can also 

affect specific habitat needs of the terrestrial adult life stage of aquatic insects (e.g. 

riparian trees; Hoffmann, 2000), something which appears to be often overlooked in 

river restoration. 

In this study there was no difference in the effect of restoration on macroinvertebrates 

between large and small restoration projects. More important is the composition of the 

regional species pool and the distance to the nearest populations of target species or 

species which are otherwise related to water of a good ecological quality (Sundermann et 

al., 2011). Many species have been lost from catchments as a result of, amongst others, 
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habitat degradation and pollution. As a consequence, there are no source populations left 

which could act as a starting point for recolonization of the restored river sections (Haase 

et al., 2013), resulting in species being currently absent at sites which are suited based 

on the hydromorphology, physical and chemical conditions and biology. For several 

restored sections investigated in this study (13 out of 20), data were available on the 

total length of the water bodies 0-1 and 1-5 km upstream of the restored sections being 

in a high or good ecological status. However, the effect of restoration on 

macroinvertebrate richness and diversity did not depend on this proxy for the species 

pool available for re-colonization (Spearman rank correlation, p > 0.21), indicating that 

the depleted regional species pools was not the main reason for the missing effect of 

restoration on macroinvertebrates in our study.  

Given the increasing number of studies finding no or only minor effects of 

hydromorphological restoration on macroinvertebrates, it is very important to identify the 

main reason for the lack of success, which amongst others might be (i) a low effect of 

restoration on the relevant microhabitat conditions despite a high effect on meso- and 

macrohabitats, (ii) the impact of other, large-scale stressors, and (iii) depleted regional 

species pools and dispersal limitations. If the latter is true and the reason in mainly 

biological, project age will become very important as a factor determining success. 

Unfortunately, dispersal in macroinvertebrates is a rather understudied topic in 

freshwater ecological research (Bilton et al. 2001); we know that long-distance dispersal 

takes place, but it is not known on what time-scale this process operates. If there are 

good reasons to assume that colonization is nearly impossible, translocation of organisms 

can be considered as an option, especially when the species in question play an 

important functional role within the ecosystem (IUCN/SSC, 2013). The results of the 

present study indicated that it is crucial to restore physical habitat conditions which are 

ecologically relevant like substrate diversity at the microhabitat scale for invertebrates 

and many restoration projects might have had a low effect on macroinvertebrates due to 

a low effect on microhabitat diversity. 
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6. Fish 

6.1 Introduction 

Rivers are among the most heavily degraded ecosystems on earth. In Europe, 64% of 

1.17 million river kilometres have been reported not in good ecological status (EEA 2012). 

Hydromorphological pressures and altered habitats have been identified as significant 

pressure for 48.2% and 42.7% of the rivers, respectively (Fehér et al. 2012). Similarly, 

in the United States, 44% of 0.9 million river and stream kilometres have been reported 

as impaired (USEPA 2009). Habitat alteration occurred in 23.2% of the impaired rivers, 

and flow alteration in 9.7%. Therefore, besides improving water quality, which is still a 

significant pressure in European rivers, hydromorphological river restoration has become 

a key objective in river basin management (Schinegger et al. 2012). Here “river 

restoration” is used as a general term for any improvement of ecological conditions in 

rivers, including pressure mitigation, habitat and flow enhancement, or continuity 

reestablishment.  

Studies on river restoration showed site or river-specific responses of biota to restoration 

of hydromorphological pressures (Jungwirth et al. 1995; Lamouroux et al. 2006; Muhar 

et al. 2007; Zitek et al. 2008; Schmutz et al. 2013). Fish has been identified as a key 

indicator to reflect biotic response to river restoration (Haase et al. 2012). Only few 

studies have compared the response of restoration measures across multiple rivers 

(Haase et al. 2012; Lorenz & Feld 2012; Januschke et al. 2014). Most of the multi river 

comparisons were limited to specific regions, thus preventing general conclusions for 

larger areas or different bioregions.  

Restoration measures may affect only specific species, life stages, or functional groups 

before the entire community reacts. However, specific metrics, e.g. juvenile fish, have 

rarely been investigated (Lorenz et al. 2013). Information about fish changes post 

restoration are important today to value the success of restoration project, and also to 

guide future restoration programmes. 

Beside direct response of fish assemblages to hydromorphological changes, it is likely 

that the length of the restored river section and the time after restoration would also 

have an effect on fish communities. There is evidence that the dimension of restoration 

measures plays a critical role in the likely effects on biota (Schmutz et al. 2013).  

Moreover, fish communities have been shown to change with time. Long recovery periods 

(i.e. 10-20 years) were supposed to result with strong effects on fish (Jones & Schmitz 

2009). However, so far just few of those factors have been tested in the restoration 

context across a large range of restored rivers in Europe. 

For European rivers, the Water Framework Directive (WFD) aims at achieving good 

ecological status or potential. The challenge is to predict how biota will respond to 

restoration and what management actions are best suited. However, here is a lack of 

empirical data on relevant geographical and long-term scales required for assessing 

restoration / rehabilitation success (Hering et al. 2010). 

This study was part of a larger approach to analyse the response of biota to 

hydromorphological restoration within the EU-project REFORM. In addition to the effects 
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on fish, responses of habitat, macrophytes, benthic invertebrates, floodplain vegetation, 

ground beetles, and stable isotopes were analysed in a common framework (Chapter 1). 

The objective of the study was to test if there is a consistent change in fish assemblages 

in response to hydromorphological restoration measures in 20 European restoration 

projects. We compared assemblage-based metrics with functional metrics and tested if 

restoration extent (restored section length and restoration intensity), its 

hydromorphological quality, and project age (time between implementation of measures 

and monitoring) affect restoration success. 

6.2 Methods 

Study sections 

The study sections and reaches as well as sampling methods for fish are described in 

Annex B and Chapter 2.5. Fifteen out of the 20 restoration projects were selected for this 

study which were located in seven regions, covering a latitudinal gradient from Central to 

Northern Europe (latitude range 46-65°). The restoration projecs were located in Austria 

(n=2), Switzerland (n=2), Czech Republic (n=1) Germany (n=4), Denmark (n=2), 

Sweden (n=2), and Finland (n=2) and vary in terms of river type, altitude, slope, and 

size (Annex B).  

 

Attributes of fish assemblages  

For this study, the length measured during fish sampling (see Chapter 2.5 for details) 

was used to discriminate between small (≤15 cm body length) and large (>15 cm) fish. 

The catch data were standardised by dividing the number of sampled fish by the sampled 

area (ind ha-1). We calculated (1) the total number of species, (2) the proportional 

densities of species (pi) and (3) the total density per hectare for all species and habitat 

traits (rheophilic, limnophilic, and eurytopic species). The proportional abundance of 

species, and the fish densities were divided into small (≤15cm) and large (>15 cm) fish.  

In total 13 metrics were considered in the analyses. We assigned all species to habitat 

traits according to the EFI+ classification (EFI+Consortium 2009) and discriminated 

between salmonid and non-salmonid species. In order to assess the potential influence of 

the sampling intensity on the number of species, we regressed the sampling area against 

the number of species. Furthermore, we calculated the Shannon Wiener diversity index 

H = - ∑ (pi * ln (pi)). Relation among fish communities of different sections were 

analysed using ordination techniques, i.e. multidimensional scaling (MDS). MDS takes a 

set of dissimilarities and returns a set of points such that the distances between the 

points are approximately equal to the dissimilarities. Euclidian distances were computed 

using relative species composition with the R function “dist”. The R function “cmdscale” 

was used to perform the MDS. 
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Effect size and restoration success 

As the restored sections vary in terms of species composition and abundance due to 

natural differences, we used an effect size as a standardised metric for comparing the 

restored and the corresponding degraded sections. We calculated the effect size as the 

value of restored sections minus the values of degraded sections (R - D). An effect size of 

zero indicates no change, a positive value represents an increase, and a negative value a 

decrease. First, effect sizes were tested for being different from zero using Student’s t-

test and Bonferroni correction for multiple testing (p= 0.05/13 = 0.00385). Second, 

highly correlated metrics (Pearson: |r|>0.8) were removed in an iterative way. Metrics 

with the highest number of correlations with other metrics were removed, and the 

procedure was repeated until only uncorrelated metrics remained. Significant positive 

change was considered as a restoration success for species richness, densities and 

diversity except for eurytopic fish where a decrease was indicative for restoration success. 

The difference between restoration effect in large vs. small restoration projects was 

tested for non-redundant metrics using Student’s t-test. 

 

Factors affecting restoration success 

We analysed the following factors potentially affecting restoration success: (i) length of 

the restored river section, (ii) time after restoration (project age) and (iii) 

hydromorphological quality of restoration. The length of the restored river section (km) 

was measured from the uppermost to the lowermost part of the restored river section. 

The time after restoration is the number of years passed since the implementation of the 

restoration measures. The hydromorphological quality of restoration was assessed using 

four types of attributes related to (i) channel geometry and flow characteristics (flow 

velocity and character), (ii) riverbed (water depth, bed stabilisation, substrate), (iii) 

water-land transition zone (river width, stabilisation, woody debris, bedload 

accumulation), (iv) riparian zone (cross section, bank protection, vegetation), and 

floodplain vegetation (extent and type). Each attribute was classified from 1 (high status) 

to 5 (bad status) following the WFD principle of status classification. Finally, an overall 

hydromorphological index was calculated by first averaging all attributes of an attribute 

type, followed by averaging the four attribute types. For more details on the 

hydromorphological monitoring methods see Chapter 2.3. Correlations among potential 

factors affecting restoration success were tested using Spearman’s rank correlations. 

We used classification and regression trees (CRT), a recursive partitioning method, to 

model fish metrics as a function of (i) length of the restored river stretch (km), (ii) time 

after restoration (years), and (iii) hydromorphological quality of restoration (index). Only 

significant fish metric were used for the tree models. CRT methods were available in the 

package rpart for R-library (R-project CRAN). Tree methods encompass several 

advantages, nonparametric basis, no implicit assumption of linearity, simplicity of results 

for interpretation, and ability of predictive classification for new observations. Trees were 

first developed with single factors (restored length, hydromorphology, time), and second 

with all factors combined. All analyses were computed using R version 3.1.1. 
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6.3 Results 

Fish were sampled in the years 2011-2014. A total of 43 species and 25,746 individuals 

were sampled, encompassing 20 rheophilic species, 15 eurytopic and 8 limnophilic 

species (Annex D). Due to the low number of limnophilic species, this trait was not 

considered in further analyses. 

Regressing the number of species against the sampling area revealed a significant 

response (F=11.08, p= 0.003), however, this relationship was triggered only by one river 

(DE_Lippe, 21 species) and, therefore, was not considered influential for the further 

analyses. 

MDS revealed closer relationships between restored and corresponding upstream 

degraded sections than among restored sections at different locations (Figure 6-1). 

Fifteen sections were dominated by non-salmonid and the same number (15) by 

salmonid species. Eleven restored sections remained in the same type of fish community 

after restoration compared to the corresponding degraded section. One restored section 

changed from salmonid to non-salmonid (CH_Thur_R1) and three from non-salmonid to 

salmonid communities (DK_Storaa_R2, SE_Morrum_R2, SE_Eman_R1). 

Figure 6-1: Multidimensional scaling (MDS) of fish communities of degraded and 

restored sections. Sections are coded with country names, restoration exent (R1= large, 

R2= small) and river names (e.g. AT_ Drau_R1: Austria-large restoration River Drau). 

Blue italics: salmonid dominated sections, red: non-salmonid dominated sections. 
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Restoration had a significant effect (p<0.05) on 5 out of the 13 metrics investigated, with 

significant changes and no redundancy with other metrics (Table 6-1, Figure 6-2). Mean 

species richness increased by approximately one species, which can be attributed mainly 

to an increase of rheophilic species. The density of rheophilic fish and of small rheophilic 

fish and the proportion of density of small rheophilic fish increased. However, only the 

proportion of density of small rheophilic fish (increase of 24%) was significant when 

considering the Bonferroni corrected p-value (p = 0.00385). Eurytopic fish decreased or 

changed only slightly, however, they were either not significant or redundant to other 

metrics. Neither total density nor Shannon-Wiener diversity increased significantly. No 

difference between small and larger restoration projects were found when using the most 

significant metric, i.e. proportion of small rheophilic fish (p = 0.8689, Figure 6-3). 

The hydromorphological index of restored sections ranged from 1.4 to 2.5 (median 1.9), 

indicating “high” to “good” hydromorphological status. Restored sections were monitored 

in the years 2011-2014, 1 to 17 years (median 7 years) after completion of restoration 

measures, and the length of restored sections covered a wide range between 0.2 and 

26.0 km (median 0.9 km). Correlations among potential factors affecting restoration 

success were low and not significant (r< ∣0.26∣, Table 6-2). 

Table 6-1: Effect size measured for 13 metrics based on fish. P-values, significance level 

and redundancy are given for each fish metric. Bold metrics indicate significant metrics 

considering Bonferroni correction. 

Fish metric Unit Mean effect size p-value Significance level Redundancy 

Species richness number 1.07 0.03310 >0.00385 not redundant 
Richness rheophilic number 1.00 0.02700 >0.00385 not redundant 
Density rheophilic number per ha 301.33 0.03660 >0.00385 not redundant 
Density rheophilic small number per ha 213.63 0.02080 >0.00385 not redundant 
Proportion density rheophilic small percentage 24.11 0.00350 <0.00385 not redundant 
Total density number per ha 313.07 0.41690 >0.00385 --------- 
Shannon diversity index 0.14 0.14190 >0.00385 --------- 
Richness eurytopic number 0.00 0.97500 >0.00385 --------- 
Density eurytopic number per ha -2.19 0.20610 >0.00385 --------- 
Density eurytopic small number per ha -84.02 0.09380 >0.00385 --------- 
Proportion density rheophilic percentage 19.88 0.01560 >0.00385 redundant 
Proportion density eurytopic percentage -19.76 0.00330 <0.00385 redundant 
Proportion density eurytopic small percentage -17.19 0.00080 <0.00385 redundant 

 

Table 6-2: Correlations among three factors potentially affecting restoration success 

  
Hydro-morphological index Length of restored section  

Length of restored sections -0.26 (p=0.34) - 
Years after restoration -0.14 (p=0.62) 0.17 (p=0.55) 
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Figure 6-2: Effect sizes of 13 analysed metrics related to (A): species richness and diversity, 

(B): density (ind ha-1) and (C): proportion of density. 
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Figure 6-3: Effect size of the proportion of small rheophilic fish in large (R1) and small 

(R2) restoration projects.  

 

Based on single factor regression tree analyses, using the only significant and non 

redundant metric proportion of small rheophilic fish as independent variable, sections 

with a length > 1.95 km revealed stronger responses to restoration than shorter 

sections. This was driven by three restoration projects (DE_Lippe_R1, DK_Skjern_R1, 

SE_Morrum_R2). Sections with hydromorphological indices <2.14 showed higher effect 

sizes than those with indices ≥ 2.14 (AT_Enns_R2, DE_Lahn_R2, DE_Ruhr_R1, 

DE_Spree_R2). Restored sections which were monitored before three years or after 12.5 

years (CZ_Becva_R1, DE_Lahn_R2, DE_Lippe_R1, DK_Storaa_R2, SE_Eman_R1 

SE_Morrum_R2) showed stronger restoration effects than those monitored between 3 

and 12.5 years. When considering all three factors simultaneously, short-term effects 

were most important for high effect sizes (DK_Storaa_R2, SE_Eman_R1, 

SE_Morrum_R2). In addition, time effects and hydromorphological index interacted in a 

way that, when excluding the short-term effects, sections with a very high 

hydromorphological index (indices < 1.57) responded more strongly (CZ_Becva_R1, 

DE_Lippe_R1, DK_Skjern_R1, FI_Kuiva_H_R2) than others (Figure 6-4). 

 

 

 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 100 of 240  

 

 
 

 

Figure 6-4: Response of proportion of small rheophilic fish to (A) length of restored 

section („RestLength“, km), (B) hydromorphological index (“Hydromorphology”, Index 

1-5) and (C) number of years passed after restoration („PassedYears“), using single 

factors (A-C) ) and all factors (D). 
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6.4 Discussion 

The hydromorphology of lotic ecosystems is being increasingly modified worldwide by 

damming, fragmentation, flow regulation and channel modification. Serious threats to 

riverine biodiversity are suspected (Collen et al. 2014), yet available field data are few 

and rarely address the various taxonomic, functional and phylogenetic components of 

biodiversity (Feld et al. 2014). At the same time, public awareness has increased and 

political masterplans (e.g. the EU-Water Framework Directive) try to counteract the 

ecological degradation. Particularly in Europe and the U.S. large numbers of river 

restoration measures are realised (Bernhardt et al. 2005). Assessing the outcome of river 

restoration projects is vital for adaptive management, evaluating project efficiency, 

optimising future programmes and gaining public acceptance (Woolsey et al. 2007). 

Although the effectiveness of river restoration has been analysed for many years, clear 

and detailed results are scarce (Bernhardt et al. 2005). For example, despite locating 345 

studies on effectiveness of stream rehabilitation by Roni et al. (2008), firm conclusions 

about restoration techniques were difficult to make first due to the limited information 

provided on physical habitat, water quality, and biota and second, due to the short 

duration and limited scope of most published evaluations. Therefore, more in-depth 

studies on river restoration are required to provide the scientific basis for effective 

restoration programmes in future. 

Only few studies compared the response of restoration measures across multiple rivers 

(Haase et al. 2012; Lorenz & Feld 2012; Januschke et al. 2014). Most of the multi river 

comparisons were limited to specific regions, preventing general conclusions for larger 

areas or different bioregions. For example, the study of Stoll et al. (2013) was restricted 

to lower mountain ranges of Germany, Schmutz et al. (2014) analysed the effect of 

restoration measures in the Austrian Danube. Only few studies compared restoration 

effects across different regions (Feld et al. 2014).  

In this study, fish data of 15 restored sections were sampled and analysed, covering a 

large latitudinal gradient from Central to Northern Europe. Species richness, species 

diversity and fish density showed only weak or no response to restoration, while habitat 

traits, i.e. rheophilic and eurytopic fish, reacted in a consistent way across the restoration 

projects investigated. Fish assemblages showed changes with hydromorphological 

restoration while other biological groups in other studies revealed less consistent results 

indicating that stressors other than hydromorphological degradation might affect the 

biota in restored sections (Haase et al. 2012). Weak diversity responses to 

hydromorphological alteration were found for macroinvertebrates in lowland rivers (Feld 

et al. 2014). Their results suggested that taxonomic and trait replacement with 

hydromorphological alteration is not followed by changes in whole-community diversity. 

Morandi et al. (2014) analysed 37 restoration projects and found that in 76 % 

community structure was the most often monitored metric, used more often than species 

richness (57 %). Mueller et al. (2014) found that fish community composition only 

changed significantly in 50% of the restored rivers, depending on the occurrence of 

species sensitive to the structures introduced by the restoration treatments. A change in 

fish assemblage structure but not in biomass has also been detected in lake restoration 

(Gao et al. 2013).  

These examples are consistent with our findings that restoration projects – as practised 

today – do not change species richness and diversity but rather community structure, in 
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our case expressed as increase of rheophilic and decrease of eurytopic fish. One reason 

could be that in headwaters (salmonid dominated communities) species diversity is low 

even under natural conditions. However, in lowland rivers (non-salmonid dominated 

communities), which naturally have a higher species richness and diversity, this had to 

be due to other reasons like water pollution, migration barriers or poor colonization 

sources. Stoll et al. (2013) attributed weak restoration response to impoverished regional 

species pool as nearly all fish species occurring in restored reaches were present in 

reaches within a distance of 5 km up- or downstream of the restored reach. They 

concluded that the limited success in establishing natural fish assemblages in restored 

reaches was attributed to spatial limitation (e.g. due to fragmentation) and an 

impoverished regional species pools from which restored reaches recruit. Future 

restoration efforts and studies should also incorporate the effects of nearby barriers, 

temporal patterns in species dispersal, and minimum effective size of potential founder 

populations (Radinger & Wolter 2014). 

We found that the proportion of rheophilic fish increased after restoration. Similar change 

was also observed in the Danube after implementation of rehabilitation measures  

(Schmutz et al. 2013). Mueller et al. (2014) demonstrated that besides lithophilic and 

invertivorous species, rheophilic fishes benefited from restoration measures. In our 

study, small rheophilic fish showed a stronger reaction than all rheophilic fish. Likewise, 

Woolsey et al. (2007) proposed to use age structure besides guilds (species traits) as 

metrics for monitoring restoration success. YOY lithophilic fish - also strongly associated 

with riverine conditions - was the reproduction guild with the highest increase in a similar 

study (Lorenz et al. 2013). As expected, the increase of rheophilic fish was accompanied 

by a decrease of eurytopic fish given the fact that total density did not change as a result 

of restoration. Restoration measures applied in our study, i.e. river widening, creation of 

instream structures, flow enhancement, re-meandering and side-channel reconnection 

recreated mesohabitats important for rheophilic fish species particularly for early life 

history, i.e. gravel bars as spawning and nursery habitats. 

Beside hydromorphological quality, our results showed that the response of fish was 

stronger within the first three years and after 12 years post restoration, and less 

pronounced in the mid-term range (3-12 years). This seems to contradict the expectation 

that longer recovery periods would result in stronger effects. Jones & Schmitz (2009) 

reviewed 240 recovery studies across terrestrial and aquatic ecosystems and identified 

mean recovery times of 10 to 20 years for freshwater, brackish and marine systems. In 

our study, the median time frame between restoration and monitoring was seven years, 

representing only one to three generations depending on fish species. Short recovery 

effects might be due to the creation of local gravel bars providing spawning and nursery 

habitats for rheophilic fish. This is in accordance with studies on artificial redd 

constructions. Pulg et al. (2013) found that in the first two years after artificial redd 

construction, highly suitable conditions were maintained, with a potential egg survival of 

more than 50% for brown trout (Salmo trutta). Afterwards, the sites offered moderate 

conditions, indicating an egg survival of less than 50%. Conditions unsuitable for 

reproduction were expected to be reached five to six years after restoration. Otherwise, 

mid-term recovery might be hampered by the restricted spatial extent of restoration 

measures and lack of dynamic rejuvenation of created habitats. Finally, a mean increase 

of only one species in our restoration sections indicates that even longer recovery periods 

than 10 years might be necessary. 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 103 of 240  

 

Muhar et al. (2007) showed a clear relationship between restoration effect and spatial 

extent of restoration measures, but even a re-establishment of 94% of aquatic habitats 

compared with reference conditions did not guarantee good ecological status sensu WFD 

if other factors limited recovery processes. While in our study sections with a restored 

length over 1.95 km showed stronger responses, the highest positive restoration 

response in the Danube was observed for measures larger than 3.9 km (Schmutz et al. 

2013). It seems that a minimum extent of restoration measures is required to enable fish 

recovery, but thresholds might depend on river size, type of fish community and source 

populations in the surrounding (Stoll et al. 2013). 

6.5 Conclusions 

Our study demonstrates that fish respond in a consistent way to hydromorphological 

restoration measures by an increase of rheophilic and a decrease of eurytopic fish. 

Restoration effects are more pronounced within the first years after restoration than 

later. The restoration effect increases with habitat quality and length of restored river 

sections. However, current restoration practice and technique do not allow 

comprehensive recovery of lost species and population densities. The reasons for that are 

probably manifold. The length of current restoration measures is short (mostly < 1km) 

limiting the amount and diversity of provided habitats. The quality of habitat 

improvement has to receive more attention. Therefore, future restoration should focus on 

more dynamic, self-sustaining habitat improvements extending over several kilometres 

and should be coupled with other measures such as restoring river continuity and species 

reintroductions. 
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7. Macrophytes  

7.1 Introduction  

Macrophytes are important for the structure and functioning of aquatic systems in 

general and river systems in particular. Amongst others they regulate river processes 

(Tabacchi et al. 1998), provide important habitat and food for many different organism 

groups including macroinvertebrates and fish (Heck & Crowder 1991), and function as 

ecosystem engineers (Asaeda, Rajapakse & Kanoh 2010; O’Hare et al. 2011). 

The degradation of river ecosystems has resulted in the partial loss of macrophytes and 

to it related functions (Steffen et al. 2013). River restorations are expected to reverse 

these adverse effects. Comparisons between degraded and non-degraded stream reaches 

indicate that river restoration should favour vegetation typical for non-degraded reaches. 

Indeed, previous studies have shown such positive restoration effects Lorenz et al. 

(2012). These effects were evident in different life forms including helophytes, elodeids 

and lemnids (Lorenz et al. 2012).  

Helophytes are an important growth form in the riparian and littoral zone of rivers. Hence, 

restoration measures such as removal of bank fixation, re-meandering, and widening 

should favour helophytes whereas for example flow restoration should favour submerged 

hydrophytes. Time after restoration is another important predictor of macrophyte 

responses to restoration (Baattrup-Pedersen et al. 2000) and any potential response 

might be blurred by too short time span between restoration and follow-up study. 

Here, we examine the response of macrophytes to restoration in 10 large and 10 small 

restoration projects. We expect that river restoration results in increased species 

diversity of macrophytes compared to degraded systems and that the response is more 

pronounced in large restoration projects compared to small restoration projects. In 

addition, we expect that responses vary among life forms due to the large variation in 

studied restoration measures.  

7.2 Methods 

Study sections and sampling methods 

The study sections and reaches as well as sampling methods for macrophytes are 

described in Annex B and Chapter 2.6. 

Data analyses 

To detect general patterns in the species data, we performed a non-metric multi-

dimensional scaling (MDS) based on the number of different life forms per reach. 

Differences in species richness and diversity between degraded and restored sites were 

tested with the Mann-Whitney U-test. Paired comparisons, e.g. between short and long 

restorations were performed with Wilcoxon Matched pairs test. If effect sizes were 

significantly higher than zero was tested with one-sided paired t-test. Spearman rank 

order correlation was used to test for the relationship between the effect size of 

macrophyte variables and predictor variables. To reduce the hydromorphological 

predictor variables to a few essential components, we used principal component analysis 

(PCA) (Jongman, ter Braak & van Tongeren 1995).  



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 106 of 240  

7.3 Results 

Macrophyte life forms in the dataset and regional differences 

A total of 148 macrophyte, i.e. non-terrestrial species were found in the sampling 

reaches. The species richness of all life forms except hydrophytes and helophytes per 

reach was low. Haptophyds (bryophytes) were represented with a maximum number of 

10 species at site D1 in Austria but were absent from 43% of the study reaches. 

Nymphaeids were absent from 45% of the study reaches and the remaining life forms 

except helophytes and hydrophytes were absent from >50% of the study reaches. 

The macrophyte communities showed small regional differences in respect to the life 

forms, and similarity was also high between degraded and restored sites, except for 

three degraded sites in the Czech Republic and Germany (Figure 7-1). 

A B 

  

Figure 7-1: Biplots of non-metric multi-dimensional scaling (MDS) axes (1, 2) by reach. 

The non-metric MDS was based on the number of species per life form using the 

Sørensen index as similarity measure. Symbols represent the different reaches per 

country (A) and site (B) where D=degraded and R=restored. DL and DM are the two 

German sites Lippe/Spree and Ruhr/Lahn, respectively. The symbols to the left of the 

legends represent degraded systems in CZ (n=2) and DL (n=1) (symbols overlayed). 

 

Due to the low number of representatives per life forms except for hydrophytes and 

helophytes, all further analyses were based on hydrophytes, helophytes and their 

combination, i.e. macrophytes. Hydrophytes comprise emergent and submerged aquatic 

plants. Helophytes are emergent plants rooting under water or in wetted soils, with a 

gradual transition from hydrophytes to helophytes and terrestrial plants.  

 

Overall effect of restoration on macrophytes (R1 and R2 pooled) 

Overall (pooling large and small restoration projects), comparing the two groups of 

restored and degraded sections did reveal significant differences in species richness and 

diversity for helophytes, only (Figure 7-2). Species richness and diversity of helophytes 

was significantly higher in the restored sections (n=20) compared to the group of 

degraded sections (n=20, species richness: U=117, p<0.05, diversity: U=94, p<0.01). 
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Figure 7-2: Median species richness and diversity (Shannon index) in the degraded and 

restored sections divided by species group. Macrophytes consist of helophytes and 

hydrophytes. Boxes represent 25 and 75 % percentiles and whiskers 10 and 90 % 

percentiles. Asterisks denote significant differences between degraded and restored 

sections (* p<0.05, ** p<0.01). 

 

In addition, if the restored sections were compared to the corresponding degraded 

sections (pairwise comparison) by calculating the response ratio according to Osenberg 

et al. (1997), the mean restoration effects for overall macrophyte richness and diversity 

were significantly larger than zero (t-test, n=20, p<0.01 and p<0.05, respectively). In 

particular, mean restoration effects for helophyte richness and diversity were significantly 

larger than zero (t-test, n=20, p<0.001 and p<0.01, respectively), whereas restoration 

had no overall positive effect on species richness and diversity of hydrophytes (t-test, 

n=20, p>0.05 and p>0.05, respectively). 

 

Differences of restoration effect in large and small projects (R1 vs. R2) 

Neither group wise nor pairwise comparisons revealed differences in the effect size of 

species richness and diversity between large and small restoration projects, for none of 

the two life forms and for macrophytes in general (group wise: Mann Whitney U-test; 

macrophytes: species richness U=40.0, n1=10 and n2=10, p>0.05, diversity U=34.5, 

n1=10 and n2=10, p>0.05; helophytes: species richness U=31.5, n1=10 and n2=10, 

p>0.05, diversity U=35.0, n1=10 and n2=10, p>0.05; hydrophytes: species richness 

U=45.0, n1=10 and n2=10, p>0.05, diversity U=33.0, n1=9 and n2=8, p>0.05; pairwise: 
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Wilcoxon paired-sample test; macrophytes: species richness T=20, n=10, p>0.05, 

diversity T=14, n=9, p>0.05; helophytes: species richness T=14, n=10, p>0.05, 

diversity T=11, n=8, p>0.05; hydrophytes: species richness T=21, n=10, p>0.05, 

diversity T=16, n=8, p>0.05, Figure 7-3). 

 

Figure 7-3: Median effect size (ln[restored/degraded]) of species richness and diversity 

(Shannon index) for large and small restoration projects for different life forms. Boxes 

represent 25 and 75 % percentiles and whiskers 10 and 90 % percentiles. 

 

Relationship between biological metrics and environmental variables 

Only the predictor variable altitude was correlated with the effect size of species richness 

of helophytes but this single correlation was non-significant after p-value adjustment for 

multiple comparisons (Table 7-1). All other predictor variables didn’t show any 

correlation with species richness or diversity even prior to p-value adjustment for 

multiple comparisons (Table 7-1). The effect size of helophyte richness differed between 

restored sections in mountain and lowland streams (Table 7-2). Other richness and 

diversity effect sizes didn’t differ within the predictor groups, i.e. countries, river types, 

substrate types and type of main measure (Table 7-2). The median effect size of 

helophyte richness was especially high in restoration projects which mainly applied 

widening measures compared to other restoration measures. Indeed, species richness of 

helophytes was significantly higher in restored sections with widening restoration 

measures compared to those with other restoration measures (Mann Whitney test, 

U=18.5, n1=9 and n2=11, p<0.05). We only considered principal components (PCs) that 
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explained at least 10 % variation among the variables. For the interpretation of the PCs, 

we used factor loadings >|0.7|. 

Table 7-1: Correlation coefficients (Spearman rank order) between the effect size 

(ln[R/D]; n=20) of macrophyte variables and predictor variables. The significance level 

was Bonferoni-adjusted (α’=0.0036).  

Predictor 
Macrophytes Helophytes Hydrophytes 

 Richness Diversity Richness Diversity Richness Diversity 

Altitude 0.06 0.08 0.47 0.12 0.04 0.10 

Discharge -0.14 0.35 0.22 0.26 0.32 0.45 

Slope 0.24 -0.11 0.21 0.09 -0.04 0.03 

Restoration length -0.04 0.14 -0.20 0.07 0.19 0.17 

Project size -0.15 0.04 -0.19 -0.05 0.01 -0.00 

Time after restoration -0.03 -0.32 0.28 -0.04 -0.20 -0.22 

Land cover       

Artificial surface -0.09 0.15 -0.12 -0.20 0.06 0.04 

Agricultural areas -0.30 0.16 -0.20 -0.07 0.10 0.15 

Forest, semi natural areas 0.26 -0.02 0.35 0.22 0.01 -0.03 

Wetlands 0.25 -0.16 -0.44 -0.01 0.02 -0.02 

Water bodies 0.28 -0.06 -0.40 -0.24 0.26 0.27 

Hymo PC11 0.23 -0.02 -0.06 -0.07 -0.07 -0.12 

Hymo PC21 0.07 0.19 0.35 0.12 0.28 0.22 

Hymo PC31 0.05 -0.24 -0.20 0.06 -0.21 -0.31 
1 Hymo PCs represent the principal components of the assessed hydromorphological predictors. PC1 explained 

30.7, PC2 17.5 and PC3 11.6 % of all variance in the hydromorphological variables. PC1 was dominated (factor 

loadings >|0.7|) by variables of the hydromorphological survey, PC2 represented hydromorphological variables 

at the scale of the mesohabitat and PC3 represented hydromorphological at the microscale. 
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Table 7-2: Median effect size (ln[R/D]) of species richness and diversity (Shannon 

index) for different predictor variables (country, river types, substrate type and main 

measure). 25 and 75 % percentiles are given in parentheses. Differences within 

predictor groups were tested with Kruskal-Wallis ANOVA by ranks. Significant 

differences (p<0.05) are indicated by bold median values. 

Predictor 
Macrophytes Helophytes Hydrophytes 

 Richness Diversity Richness Diversity Richness Diversity 

Country       

AT (n=2) 0.11 

(-0.88-1.1) 

0.66 

(-0.02-1.34) 

1.45 

(1.39-1.5) 

1.12 

(1.07-1.17) 

-0.60 

(-1.2-0) 

-0.70 

(-0.7–-0.7) 

CH (n=2) 2.87 

(2.64-3.09) 

0.16 

(-0.08-0.4) 

0.35 

(0.00-0.69) 

0.00 

(0.00-0.00) 

0.20 

(-0.51-0.92) 

0.08 

(-0.35-0.51) 

CZ (n=2) -0.57 

(-0.77–-0.37) 

0.00 

(0.00-0.00) 

1.67 

(1.39-1.95) 

0.00 

(0.00-0.00) 

0.00 

(0.00-0.00) 

 

DK (n=2) -0.37 

(-0.41–-0.34) 

0.06 

(-0.04-0.16) 

0.11 

(-0.18-0.41) 

0.14 

(-0.05-0.34) 

-0.05 

(-0.22-0.12) 

0.03 

(-0.06-0.12) 

DL (n=2) 0.63 

(0.12-1.13) 

0.07 

(-0.06-0.21) 

0.46 

(-0.18-1.1) 

0.29 

(-0.08-0.67) 

0.05 

(-0.15-0.26) 

0.02 

(-0.09-0.13) 

DM (n=2) -0.48 

(-0.96-0.00) 

0.25 

(0.13-0.37) 

0.55 

(0.00-1.10) 

0.04 

(0.00-0.09) 

0.47 

(0.36-0.59) 

0.25 

(0.15-0.35) 

FI (n=2) 0.75 

(0.69-0.81) 

0.04 

(-0.02-0.10) 

0.59 

(0.41-0.77) 

0.27 

(0.18-0.36) 

-0.31 

(-0.62-0.00) 

-0.15 

(-0.22–-0.07) 

NL (n=2) -0.26 

(-0.61-0.09) 

0.07 

(-0.11-0.25) 

0.45 

(-0.2-1.1) 

0.18 

(-0.11-0.48) 

-0.49 

(-0.69–-0.29) 

-0.48 

(-0.68–-0.28) 

PL (n=2) -0.28 

(-0.46–-0.1) 

0.2 

(0.14-0.25) 

0.65 

(0.61-0.69) 

0.29 

(0.29-0.29) 

0.45 

(0.20-0.69) 

0.29 

(0.10-0.49) 

SE (n=2) 0.54 

(0.36-0.72) 

0.14 

(0.07-0.22) 

0.30 

(0.00-0.60) 

0.11 

(0.00-0.22) 

0.80 

(0.77-0.83) 

0.36 

(0.34-0.38) 

River type       

Mountain 

(n=10) 

0.35 

(-0.77-1.1) 

0.05 

(-0.02-0.37) 

0.94 

(0.41-1.39) 

0.04 

(0-0.36) 

0.00 

(-0.51-0.36) 

-0.07 

(-0.35-0.35) 

Lowland 

(n=10) 

0.00 

(-0.41-0.36) 

0.15 

(-0.04-0.22) 

0.50 

(-0.18-0.69) 

0.25 

(-0.05-0.34) 

0.16 

(-0.22-0.69) 

0.11 

(-0.09-0.34) 

Substrate type       

Gravel (n=12) 0.53 

(-0.57-0.95) 

0.08 

(-0.01-0.29) 

0.73 

(0.20-1.39) 

0.04 

(0.00-0.29) 

0.00 

(-0.26-0.68) 

0.15 

(-0.22-0.35) 

Sand (n=8) -0.22 

(-0.43-0.10) 

0.15 

(-0.05-0.23) 

0.51 

(-0.18-0.90) 

0.29 

(-0.07-0.41) 

-0.02 

(-0.26-0.23) 

0.02 

(-0.18-0.12) 

Main measure       

Widening 

(n=9) 

0.00 

(-0.77-1.10) 

0.13 

(0.00-0.37) 

1.10 

(0.69-1.39) 

0.00 (0.00-

0.67) 

0.00 

(0.00-0.36) 

0.14 

(-0.35-0.35) 

Remeandering 

(n=3) 

-0.41 

(-0.61-1.13) 

-0.04 

(-0.06-0.25) 

-0.18 

(-0.18-1.10) 

-0.05 

(-0.08-0.48) 

-0.22 

(-0.69–-0.15) 

-0.09 

(-0.68–-0.06) 

Instream 

measures 

(n=4) 

0.39 

(-0.12-0.75) 

0.04 

(-0.06-0.13) 

0.41 

(0.10-0.59) 

0.26 

(0.04-0.35) 

-0.14 

(-0.45-0.06) 

-0.15 

(-0.25-0.02) 

Anastomosing 

(n=1) 

-0.10 0.14 

 

0.69 

 

0.29 

 

0.20 

 

0.10 

 

Floodplain 

reconnection 

(n=1) 

-0.46 

 

0.25 0.61 0.29 

 

0.69 

 

0.49 

 

Flow 

restoration 

(n=2) 

0.54 

(0.36-0.72) 

0.14 

(0.07-0.22) 

0.30 

(0.00-0.60) 

0.11 

(0.00-0.22) 

0.80 
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0.36 

(0.34-0.38) 
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7.4 Discussion 

Nutrient input and impoverishment in hydromorphology properties have been suggested 

as important drivers of species and diversity loss of macrophytes in streams (Steffen et 

al. 2013). Restoration measures are hence expected to reverse this process. In contrast 

to our hypothesis and Lorenz et al. (2012), restoration did generally not result in higher 

species richness and diversity of macrophytes when comparing degraded and restored 

sections. However, the life form showing a positive response to restoration was 

helophytes. Helophytes, corresponding to the life form emergent hydrophytes, with 

representatives such as Phragmites australis, Alisma plantago-aquatica and Caltha 

palustris, grow in the riparian and littoral zone on exposed or submerged soils (Mäkirinta 

1978). Hence, restoration measures targeting e.g. removal of bank fixation as done in 

Lorenz et al. (2012) or widening and remeandering as done in several restoration 

projects investigated in this study should favour helophytes. Indeed, in our study, 

widening was the restoration measure that had a significant effect on the effect size of 

helophytes. Our study confirmed the importance of stream type (lowland versus 

mountain) for the effect size of helophyte response. In accordance with Lorenz et al. 

(2012), the effect size was higher in mountain compared to lowland streams. However, 

this might also be due to the fact that most widening projects were located in mountain 

rivers. 

The response of hydrophytes depends most likely on the type of restoration measures. 

Whereas instream measures such as boulder placement (Finland) showed a negative 

effect size of both hydrophyte richness and diversity, flow restoration (Sweden) showed 

the opposite effect. The non-significant hydrophyte effect sizes of richness and diversity 

might hence be due to the range of different restoration measures performed in 

combination with a lack of replicates per stream type.  

Time after restoration is an important predictor of macrophyte responses to restoration 

(Baattrup-Pedersen et al. 2000). Our study was performed on average 10 years (range 

3-16 yrs.) after restoration. This time period was on average 5 years in Lorenz et al. 

(2012) that found significant restoration responses of several macrophyte life forms. 

Hence, time after restoration can most likely not explain the low macrophyte response in 

our restored sections. 

The effect of local and reach-scale restoration measures might be overruled by upstream 

and non-restoration related river characteristics (Lorenz & Feld 2013). In our study, 

macrophyte-related effect sizes were not related to upstream land use. Also, and in 

contrast to earlier findings (Baattrup-Pedersen & Riis 1999), effect sizes were in our 

study not substrate dependent. 

In conclusion, we suspect that any potential further responses of macrophytes to the 

here studied restoration measures were masked by the diversity of performed measures. 

Different restoration types could even have opposite effects on macrophytes. 

Remeandering and widening could potentially increase the effect size for lemnids 

(floating macrophytes) due to lowering stream flow, whereas flow restoration targeting 

an increase in flow should have a negative effect on lemnids. Indeed, however based on 

low species number, the restored sections DL_R1 (widening) and DK_R1 (remeandering) 

showed positive effect sizes for leminds whereas the Swedish site where an entire 

hydropower dam was removed showed a negative effect size for this life form. 
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8. Ground beetles  

8.1 Introduction  

Many species of ground beetles are found in riparian areas worldwide. These species 

often have special adaptations to the specific environmental conditions associated with 

these habitats, for example, to be able to withstand flooding. In general, ground beetles 

strongly respond to changes in microhabitat conditions (Rainio and Niemelä, 2003; 

Lambeets et al., 2009), especially vegetation density or substrate composition (Lambeets 

et al., 2008) as they mainly live in the soil or above ground. In terrestrial habitats, 

ground beetles are well-known indicators for management and disturbance (Kotze et al., 

2011), e.g. habitat changes in agricultural areas and forests (Lövei & Sunderland, 1996; 

Kromp, 1999; Niemelä et al., 2007) and hydrological conditions in grasslands (Gerisch et 

al., 2006; Follner & Henle, 2006). For riparian habitats, several studies point out the 

importance of near-natural flooding disturbance for the presence of characteristic carabid 

assemblages (e.g., Van Looy et al., 2007; Lambeets et al., 2008). 

However, riparian and aquatic habitats have been altered by man since the Middle Ages 

to benefit from provisioning, regulatory and cultural services, e.g., navigation, waste 

water treatment and recreation (Millennium Ecosystem Assessment, 2005). Particularly 

in densely populated areas, such as Central Europe, most rivers have suffered from 

straightening, bed and bank fixation, the loss of lateral and longitudinal connectivity and 

altered flow and sediment regimes. More than 50% of European river are affected by 

hydromorphological pressures (EEA, 2012), and 90% of floodplain forests have 

disappeared, whereas remaining fragments are often in a critical condition (UNEP-WCMC, 

2000). Negative effects on riparian communities have been detected (Greenwood et al. 

1991; Godreau et al. 1999; Tockner et al. 2008). For example, for German floodplains, 

agricultural landuse in the floodplain, the construction of dikes, river training and 

impounding inhibit natural flooding dynamics and are considered as major threats for 

carabid beetles (Müller-Motzfeld, 2000; Reißmann et al., 2005).  

The European Water Framework Directive (WFD; Directive 2000/60/EC) aims to improve 

the ecological status of all ground and surface waters in the European Union according to 

chemical, hydromorphological and biological conditions. Thereby, the improvement of 

river hydromorphology is one of the top measures (EEA, 2012). This has led to a large 

increase in the number of restoration projects, a large number of restoration projects 

have been implemented in recent years (e.g. in North America, Europe, Japan and 

Australia) (Lake et al., 2007, Feld et al., 2011) and this number is still increasing. 

Although the number of empirical studies increased over the last 20 years, studies 

dealing with effects of restoration on riparian communities are rare (Wortley et al., 2013). 

It may also due to the fact that the WFD focuses exclusively on aquatic organism groups. 

These studies mainly act on reach-scale (Jähnig et al., 2009, Januschke et al., 2014) or 

on single rivers (Lambeets et al., 2008, Günther & Assmann (2005). Although they 

suggest general responses of carabid beetles to restoration, e.g. increased species 

richness and the presence or a higher number of riparian specialists, investigations at 

larger spatial scales, e.g. comparing several rivers are nearly missing. Studies about the 

relationship between restoration effects on carabid beetles and the type of restoration 

measures applied (e.g., widening vs. instream measures) and the effect of the length of 

restored sections are still missing. 
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Most probably, ground beetles benefit from restoration measures which create favourable 

riparian habitats like open gravel bars. Riparian carabid species are well adapted to 

dynamic flood-prone areas and have a strong flight and, therefore, dispersal ability 

(Desender, 2000) which makes them fast colonizers (Lambeets et al., 2008). Therefore, 

measures that include river widening and the creation of flood-prone riparian areas 

should generally have strong positive effects on ground beetles as flooding dynamics and 

disturbances will re-create the pioneer habitats. In contrast, measures that focus on the 

improvement of instream habitats, remeandering of the watercourse or reconnecting 

existing waters such as oxbows may not have effects on carabids, as the channels are 

still fixed and flood-prone riparian areas or erosional zones are missing. 

Furthermore, it could be suggested that large restoration projects with high channel 

dynamics are more effective in generating these specific habitats compared to small 

projects where natural channel dynamics are restricted. The larger area of suitable 

habitats may contain more viable populations of different species. 

A comparative analysis of hydromorphological restoration measures and restoration 

effects on ground beetles at the European scale is still missing, although general patterns 

of positive effects can be derived from the performed studies. Therefore, we investigated 

the ground beetle assemblage compositions collected in riparian zones of 20 paired 

restored and degraded reaches of rivers throughout Europe (see detailed description in 

Chapter 1.2 and Annex B). We tested, if changes in total species richness, richness of 

riparian specialists, Shannon Wiener diversity and community composition could be 

related to differences in river characteristics, restoration type and extent and habitat 

availability. 

We expect that:  

• In general, morphological river restoration increases richness and diversity of ground 

beetle assemblages, 

• restoration measures which aim at widening and create pioneer habitats are more 

successful in increasing ground beetle richness and diversity than other measures, 

• restoration measures in gravel-bed rivers naturally characterized by high hydraulic 

power, which creates and maintains pioneer habitats, are more successful in increasing 

ground beetle richness and diversity than measures in sand-bed rivers, 

• ground beetle assemblages were mainly influenced by habitat characteristics (e.g. the 

presence of open bars) and restoration project characteristics (e.g. restoration type, age 

of restored sections) and to a lesser extent by river characteristics (e.g. altitude). 
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8.2 Methods 

Study sections and sampling methods 

The study sections and reaches as well as sampling methods for the ground beetles are 

described in Annex B and Chapter 2.7. 

 

Calculation of parameters 

We calculated species richness and Shannon Weaver diversity (Shannon & Weaver, 

1949) of ground beetles for each sample section. For all recorded species, we compiled 

information about their ecological preference and counted the number of species with a 

preference for sparsely vegetated river banks and shores, wetlands or wet to moist 

forests. Preferences were derived from the carabids.org database (Homburg et al., 

2013). 

To quantify effects of restoration on ground beetles, we calculated two types of effect 

sizes for richness, Shannon diversity and the number of species with defined habitat 

preferences. We used: (1.) Pairwise calculation of the difference between each pair of 

restored and degraded section, and (2.) a modified version of the response ratio    

developed by Osenberg et al. (1997). 

The original formula given by Osenberg et al. (1997) is: 

     (
  

  
), 

whereas XR is the species richness or diversity of the restored section and XD of the non-

restored section. Thereby, values > 0 denote a positive effect (e.g. increase of richness 

or diversity), and negative values a negative effect. This formula was not appropriate for 

our data (e.g., for diversity or the proportion of species with habitat preferences) as we 

had 0-values for the degraded sections and could, therefore, not calculate the response 

ratio. Instead, we calculated a modified response ratio    according to the following 

formula: 

      (
      

      
). 

 

Environmental parameters 

We chose a set of environmental variables related to river, habitat and restoration 

project characteristics (Table 8-1). 

River characteristics contained altitude of the restored reach, slope of the restored 

channel, mean discharge, mean channel width and overall bed coarseness. Project 

characteristics were the extent of restoration (large and small restoration projects 

differing in respect to restored reach length and/or restoration intensity), the type of 

restoration measure (widening or others, e.g. flow restoration, remeandering, instream 

measures) and the time since restoration in years. Habitat characteristics included the 

number of mesohabitats present in the sampling section and their proportional cover. 

Cover was estimated in a maximally 10 m wide strip of all riparian zone. If the bank’s 

width was smaller, sampling area only spanned the area of the high-water level. 

Originally, also data including the whole wetted width of the sampled sections based on 
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hydromorphological survey was included (transect method), but this gave the same 

results as using the data for the riparian zone only. Therefore, only the former is used in 

the analyses. 

Table 8-1: Environmental variables classified according to river, project and habitat 

characteristics (10 m wide strip of riparian area). 

Variable class Variable 

River characteristics Altitude (m above sea-level) 

 Slope (%) 

 Discharge (m3/s) 

 River width (m) 

 Bed coarseness (cobbles-gravel or sand bed) 

Project characteristics Restoration extent (large vs. small restoration projects) 

 Restoration type / measure (widening, other) 

 Time since restoration (year) 

Habitat characteristics Mesohabitat presence (total number) 

 Sparsely vegetated mineral bars and banks (%) 

 Woodland (%) 

 Herbaceaous vegetation (%) 

 

Data analyses 

First, we tested if there was an overall positive effect of restoration on ground beetle 

richness and diversity by comparing richness and diversity of all restored (R) and all 

degraded (D) sample sections (group and pairwise comparison of R vs. D). Second, we 

tested, if restoration effects depend on restoration extent by comparing richness and 

diversity of all large (R1) and all small (R2) restoration projects using absolute values 

(group and pairwise comparison of R1 vs. R2). Additionally, we analysed effects sizes 

based on richness and diversity in terms of differences between values (R2-R1) and 

using the response ratio modified after Osenberg et al. (1997) calculated for each pair of 

restored and degraded section. Third, we tested if effect sizes differ between projects 

which mainly aimed at river widening (usually affecting aquatic, semi-terrestrial, and 

terrestrial areas) and projects which applied other, less extensive measures mainly 

affecting the river channel itself (instream measures, flow restoration, remeandering, 

anastomosing, similar to the grouping of measures in Chapter 5 on invertebrates). 

Fourth, we investigated in more detail which habitats should be restored and which 

biological ground beetle metrics benefit or are suitable to assess restoration effect. To 

parameterize the typological differences among European rivers, we combined river 

characteristics (bed type, slope, altitude, discharge, width) as super-ordinated variables 

into one parameter. Thereby, we extracted a composite descriptor using principal 

components analysis (PCA), which was used for further analyses. Principal components 

that explained a significant non-random part of the variation were retained (broken-stick 

model; Jackson 1993). Correlations for each variable with Principal Component 1 were 

calculated to derive its main descriptors. Sample scores of the sections on the significant 

principal component were used as a new quantitative variable in the subsequent 

ordinations. Subsequently, we analysed the relationship between the effect sizes for the 
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biological metrics (Table 8-2) and environmental variables (river, habitat and restoration 

project characteristics) using redundancy analysis (RDA). As biological metrics we chose 

commonly applied metrics, e.g. richness, diversity, community composition, and metrics 

related to habitat preferences as we expected restoration benefits for species specialized 

on river bank, wetlands and wet woodland. To determine which part of the variation in 

effect sizes can uniquely be attributed to changes in certain environmental variables and 

which part is shared with other variables, variance partitioning was applied to test if the 

different groups of variables are related to each other. Forward selection (Monte Carlo 

permutation test, 9,999 permutations, P values Holm corrected) was used to retain only 

those variables which significantly contributed to the variance explained by each of the 

groups. Ordinations were carried out using Canoco 5.03 (Ter Braak & Šmilauer, 2012). 

Table 8-2: Classification and description of parameter types used in the redundancy 

analyses to analyse the relationship between biological metrics (response variables 

based on ground beetles) and environmental characteristics (explanatory variables); R = 

restored reach, D = degraded reach.  

 
 Parameter type Parameter description Value calculated as 

R
e
s
p
o
n
s
e
 v

a
ri

a
b
le

s
 

Biological metrics 

Richness Total species richness 

Response ratio 
modified after 
Osenberg et al. 
(1997) 

Diversity Shannon Wiener index value 

Response ratio 
modified after 
Osenberg et al. 
(1997) 

Community 

composition 
Species composition samples 

Euclidian distance 

between R and D 

Habitat preference 
Number of river bank 
specialists 

Response ratio 
modified after 
Osenberg et al. 

(1997) 

Habitat preference Number of wetland specialists 

Response ratio 
modified after 
Osenberg et al. 
(1997) 

Habitat preference 
Number of wet woodland 
specialists 

Response ratio 

modified after 
Osenberg et al. 
(1997) 

E
x
p
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n
a
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 v

a
ri

a
b
le
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River 
characteristics 

River 
characteristics 

PC-1 (hydraulic gradient) R 

Restoration 

characteristics 

Restoration 
Restoration extent 
(large/small) 

R 

Restoration 
Restoration measure 
(widening/others) 

R 

Restoration Time since restoration (year) R 

Habitat 

characteristics 

Habitat richness 
Number of mesohabitats in 

riparian area 
R – D 

Habitat 
composition 

Sparsely vegetated mineral 
bars and banks (%) 

R – D 

Habitat 
composition 

Woodland (%) R – D 

Habitat 
composition 

Herbaceous vegetation (%) R – D 
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8.3 Results 

Overall effect of restoration on ground beetles (R1 and R2 pooled) 

In total, we found 130 ground beetle species; species richness per sample section varied 

between one and 25 species. Overall (pooling large and small restoration projects), 

simply comparing the two groups of restored and degraded sections did not reveal any 

difference (Figure 8-1). Mean species richness was 8 species per section and mean 

diversity about 1.7 in both degraded and restored sections. 

 

Figure 8-1: Comparison of a) species richness and b) diversity of ground beetles in 

degraded (= D) and restored (= R) sections. 

However, if the restored sections were compared to the corresponding degraded sections 

(pairwise comparison), mean effect sizes for ground beetle richness were significantly 

larger than zero (t-test, p<0.05). This pattern applies for both methods used to quantify 

restoration effect size (the difference of the 20 pairs of restored and corresponding 

degraded sections based on absolute values as well as the relative response ratios). 

Restoration increased ground beetle richness by about 3 species (max 12). In contrast, 

restoration had no overall positive effect on diversity. 

 

Differences of restoration effect in large and small projects (R1 vs. R2) 

Group comparison did not reveal significant differences between the small (R2) and large 

(R1) restoration projects and the degraded sections (D1, D2) in respect to species 

richness and diversity (Figure 8-2). 

However, a paired comparison (calculating effect sizes of restored sections compared to 

the corresponding degraded sections) showed that mean effect sizes were significantly 

larger than zero (t-test, p<0.05) for the large but not for the small restoration projects 

(Figure 8-1 a). This was not a general pattern as species richness decreased in some 

restored sections (expressed as negative effect sizes). In case of the small restoration 

projects (R2), ground beetle richness decreased in four out of the ten sampling sections. 

Moreover, differences of effect sizes between large and small restoration projects were 

not statistically significant, neither for comparing the two groups R1 and R2 (Mann-

Whitney U test, p = 0.52, n = 20 ), nor for a paired comparison (R1 compared to 

corresponding R2 section, Wilcoxon-Matches Pairs test, p = 0.55, n= 10). In contrast to 

species richness, restoration did not increase diversity in none of the subsets of large and 

small restoration projects. We observed both, an increase and decrease in the single 
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restoration projects and mean values for large and small restoration projects were not 

different from zero (Figure 8-1b). Moreover, the range of richness and diversity changes 

did not differ. 

 

Figure 8-2: a) species richness and b) diversity of ground beetles in large and small 

restoration projects and paired degraded sections (R1 = large projects, D1 = degraded 

sections belonging to R1; R2 = small projects, D2 = degraded sections belonging to R2). 

 

 

Figure 8-3: Comparison of effect sizes based on a) species richness and b) diversity of 

ground beetles in large (R1) and small (R2) restoration projects and paired degraded 

sections; effect sizes were pairwise calculated as the difference between restored and 

degraded (R1-D1 and R2-D2). 

 

The effect of restoration on richness and diversity was standardized using the response 

ratio (Osenberg et al. 1997), which allows to compare the resulting relative values 

between metrics (in contrast to the absolute differences, see Figure 8-4). Restoration 

effect on richness was larger compared to diversity and differences were significant for 

the large restoration projects (Mann-Whitney U test, p<0.05) but none of the mean 

response ratios was larger than zero (t-test, p>0.07). 
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Figure 8-4: Comparison of response ratios modified after Osenberg et al. (1997) based 

on species richness and diversity of ground beetles in large and small restoration 

projects and paired degraded sections (R1 = large projects; R2 = small projects); effect 

sizes were pairwise calculated. 

 

General relationship of ground beetle richness and diversity and the type of 

restoration measures 

Effect sizes based on ground beetle richness and diversity differed significantly between 

restoration measures (Kruskal-Wallis test, p < 0.01), which aimed at widening, and other 

restoration measures, e.g. improvement of instream habitats, flow restoration and 

remeandering (Figure 8-5). 

In all restored sections where widening was applied as a restoration measure, species 

richness was increased by around seven species, and in most of the sections diversity 

was increased as well (t-test, p<0.05, n=11). In contrast, other restoration measures led 

predominantly to decreased ground beetle richness and diversity. 

 

Figure 8-5: Comparison of effect sizes based on  a) species richness and b) diversity of 

ground beetles in restored sections with widening and restored sections with other 

measures (e.g., improvement of instream habitats); effect sizes were pairwise calculated 

as the difference between restored and degraded (R1-D1 and R2-D2). 
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A comparison of the response ratios modified after Osenberg et al. (1997) showed that 

effects of widening on ground beetle richness were strong, whereas effects on diversity 

were comparatively low (Figure 8-6). 

 

Figure 8-6: Comparison of response ratios modified after Osenberg et al. (1997) based 

on species richness and diversity of ground beetles in restored sections with widening 

and restored sections with other measures (e.g., improvement of instream habitats). 

 

Moreover, response ratios differ between river types (gravel vs. sand bed river, Figure 

8-7) with patterns similar to differences between restoration measures. Restoration 

measures in gravel-bed rivers mainly increased ground beetle richness, whereas there 

were no clear effects in sand-bed rivers. Effects on diversity were low, both in gravel- 

and sand-bed rivers, whereas richness tend to decrease in restored sections of sand-bed 

rivers. 

 

 

Figure 8-7: Comparison of response ratios modified after Osenberg et al. (1997) based 

on species richness and diversity of ground beetles in restored sections of gravel- and 

sand-bed rivers. 
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Relationship between biological metrics and environmental variables 

The main descriptors for typological differences among European rivers, calculated by 

correlations of river characteristics (bed type, slope, altitude, discharge, width) with 

Principal Component 1, were a combination of coarseness of the riverbed, altitude and 

slope (Table 3). Sample scores of the sites on the significant principal component were 

used as a new quantitative variable in the subsequent ordinations, which we defined as 

hydraulic gradient, ranging from coarse-bed, high gradient rivers to low gradient rivers 

with a sand bed. 

 

Table 8-3: Results of the principal component analysis. Based on the loadings of each 

variable on the significant principal components (PC) expressed as Pearson correlation 

coefficients, it main descriptors (r > 0.8; in bold) were determined; significance of the 

principal components: * significant, n.s. not significant. 

River characteristics and PC parameters 
Pearson correlation coefficient (r) 

 PC-1 PC-2 PC-3 

Altitude (m above sea-level) -0.8 -0.5 0.2 

Slope (%) -0.8 0.6 -0.0 

Discharge (m3/s) -0.5 0.3 0.7 

Channel width (m) -0.5 0.3 0.6 

Bed coarseness (gravel vs. sand-bed) -0.8 -0.1 -0.5 

Eigenvalue 13.7* 4.4ns 2.7ns 

Broken-stick eigenvalue 10.2 5.7 3.5 

% of total variance explained 61.3 19.7 11.9 

 

Richness  

There was a significant relationship between the variation in effect sizes for total richness 

and the environmental variables (F = 5.4, P = 0.006). Based on forward selection the 

variability in the effect size for total ground beetle richness was explained best by the 

application of widening as a restoration measure (category “restoration”), the difference 

in proportion of woody vegetation along the river banks between the restored and 

degraded reach (category “habitat”) and the hydraulic gradient (category “river type”). 

Variance partitioning showed that widening accounted for 21.4% of the effect size 

variability, which was not shared with the other variables (Figure 8-8 a). The difference 

in proportion of woody vegetation accounted for another 10.9%. Shared variance 

between these two variables accounted for 21.7% of the variability in effect size; another 

21.7% was shared by all three variables. No significant unique contribution of the 

hydraulic gradient was detected; variability explained by this parameter was in the first 

place shared with the other two variables and to a lesser extent complementary. In total, 

26% of the variation remained unexplained. Highest effect sizes for total species richness 

were obtained in high-gradient rivers, where widening as a restoration measure was 

applied and where the proportional cover of woody vegetation is lower in the restored 

reach in comparison to the degraded reach (Figure 8-8 b). 
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Diversity and community composition 

Variation in the effect of restoration on species diversity (floodplain scale: F = 1.0, P = 

0.475; river bank scale F = 1.4, P = 0.305) could not be explained by the differences in 

environmental variables between the restored and degraded sections. No environmental 

variables explained the variation in the differences between community composition in 

the degraded and restored sections on floodplain scale (F= 1.5, P = 0.270) and river 

bank scale (F =1.8, P = 0.190). 

 

Species with specific habitat preferences 

There was a significant relationship between the variation in effect sizes for those ground 

beetle species preferring sparsely vegetated river banks and the environmental variables 

(F = 7.7, P = 0.002). Forward selection resulted in the same set of variables as for total 

richness, except that habitat characteristics was represented by the difference in 

proportion of sparsely vegetated banks with coarse substrate between the restored and 

degraded sections. Variance partitioning showed that widening accounted for 20.0% of 

the effect size variability which was not shared with the other variables; the unique 

contribution of the other two variables was not significant (Figure 8-8 c). Nonetheless, 

variance shared between all variables was 30.2%, and widening shared another 9.6% 

with sparsely vegetated banks. Therefore, the variability in effect size for river bank 

specialists was explained by the variables in a similar way. In total, 36.3% of the 

variation remained unexplained. For riparian specialists, highest effect sizes are again 

obtained in high-gradient rivers, where widening as a restoration measure was applied 

and where the proportional cover of sparsely vegetated banks is higher in the restored 

reach in comparison to the degraded reach (Figure 8-8 d). The effect sizes for the 

number of species preferring either wetlands or wet to moist forests were not related to 

any of the environmental variables (wetland preference F = 0.9, P = 0.537; wet to moist 

forest preference F = 0.6, P = 0.774). 
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Figure 8-8: Results of redundancy analysis performed with response ratios modified 

after Osenberg et al. (1997) for total ground beetle richness: A. variance decomposition 

for river, project and habitat characteristics; B. triplot of significant environmental 

variables, response ratios and sample scores on axis 1 and 2 and richness of species with 

a preference for sparsely vegetated river banks (= riparian richness) (C., D.) and 

environmental data for paired restored and degraded sections. 

 

8.4 Discussion 

General restoration effects on ground beetle richness and diversity 

Habitat diversity in riparian areas is a precondition for high ground beetle richness mainly 

due to the presence of primary habitats as open sand and gravel bars (Bonn et al., 2002; 

Van Looy et al., 2005) as also shown in our study. Accordingly, we found a strong 

relationship between species richness and a specific habitat type, the open pioneer stage 

covered by sparse woody vegetation. Thereby increased species richness was not related 

to the number of habitat types. Restoration increased species richness using pairwise 
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comparisons of degraded and restored sections, thus supporting our first hypothesis. 

However, we did not find a common pattern of higher richness in restored sections 

compared to all degraded sections contrasting the results of Januschke et al. (2011), who 

found low ground beetle richness in degraded and high richness in restored sections for 

24 hydromorphological restored sites in three Federal States of Germany. In our case 

studies, riparian areas of degraded sections differed in their morphological status. 

Although most of them were characterized by fixed embankments, some degraded 

sections had shallow vegetated banks which were affected by flooding. These additional 

habitats offer more niches for ground beetles than the fixed embankments in most of the 

degraded sections. 

 

The importance of restoration project, habitat and river characteristics 

Ground beetle assemblages were mainly influenced by the restoration type (widening), 

habitat characteristics (the presence of open bars) and to a lesser extent by river 

characteristics (high hydraulic gradient).  

As expected, widening was an effective restoration measure leading to strong increases 

of ground beetle richness, and to a lesser extent of diversity, in all investigated sampling 

sections. This measure creates lateral connectivity between the river and its floodplain. 

At best, it leads to a habitat mosaic of different successional stages containing open bars 

and shallow vegetated banks at the shoreline and higher elevated and less flooded banks 

with woody vegetation. As ground beetle assemblages contain many species with 

selective habitat preferences according to vegetation density, substrate and moisture 

conditions (Van Looy et al., 2005), the created habitat mosaic offers many niches for 

them. Increased species richness of ground beetles due to river bank widening was also 

found by Van Looy et al. (2005), Zulka (2008), Jähnig et al. (2009) and Januschke et al. 

(2014). 

Similar to investigations of Günther & Assmann (2005) and Sadler et al. (2004), dynamic 

habitats at the shoreline, e.g. open gravel and sand banks, were crucial habitats 

enhancing species richness by increasing the number of riparian specialists. Species with 

a strong preference of open banks are well-adapted to dynamic riparian areas underlying 

flood disturbance because of their small body size, flattened bodies and well-developed 

wings and flight-muscles (Desender & Turin, 1989). Due to their high dispersal ability 

(Desender, 2000), they can colonize newly generated habitats rapidly and intensively. 

Thereby, main factors for a successful dispersal of riparian ground beetle species and 

their colonization of new habitats are flooding disturbance, increasing the rate of 

dispersal, and a natural distribution of appropriate habitat patches (Bates et al., 2006). 

Accordingly, effects of restoration on ground beetles were independent from the 

longitudinal extent or the age of restoration. The presence of pioneer-habitats is more 

important than their area, as apparently dispersing individuals are able to detect these 

small patches very fast and to complete their life cycle there. 

For both, species richness and richness of riparian specialists, highest effect sizes were 

obtained in high-gradient rivers where widening as a restoration measure was applied 

and where, due to restoration, woody banks were decreased (in case of species richness) 

or open bars were increased (in case of riparian specialists). Thus, the hydraulic gradient 

of rivers has an additional effect in combination with the restoration measure type and 

habitat characteristics. Mountain rivers are naturally characterized by high 
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hydromorphological dynamics which lead to sediment erosion and deposition and 

therefore to a shifting habitat mosaic due to flooding (Ward et al., 2002). Therefore, river 

widening sets a starting point for self-reinforcing processes in direction of a habitat 

mosaic and the maintenance of open bars. 

For low-gradient rivers (lowland rivers), we did not detect restoration effects on ground 

beetles, neither on richness and diversity nor on species with specific habitat 

preferences. Two reasons could be supposed. First, many lowland rivers in Europe were 

straightened for agricultural landuse in the floodplain (EEA, 2012). The loss of natural 

floodplains implies impoverished source populations of wetland and wet forest species, 

which would be mainly typical for lowland floodplains (Bonn et al., 2002; Gerisch et al., 

2006), due to the fact that well-developed marshes dominated by sedges or old wet 

forests are very rare. Second, investigated measures, which are applied in lowland rivers, 

may not create suitable habitats such as wetlands or wet forests with required inundation 

frequency as they were mainly instream measures or aimed at flow restoration. However, 

the presence of wetland species strongly depends on hydrological parameters such as 

inundation and groundwater depth (Gerisch et al., 2006) and particularly lowland rivers 

are naturally characterized by a strong lateral connection between the river and its 

floodplain. Moreover, it is well-known that habitat turnover in terms of bank erosion and 

lateral migration of the channel takes longer time spans in lowland than in mountain 

rivers (Richards et al. 2002). Hence, the development of near natural habitat conditions 

in restored lowland rivers such as open mud and sand bars, wetlands and wet forests 

may need more restoration effort than the initiation of self-reinforcing processes. 

However, implications of our study are limited as we focused on riparian areas on a 10m-

strip and did not investigate whole floodplains. Therefore, it could also be supposed that 

carabids typical for wetlands were not captured as they probably occur further away from 

the river channel, in marshes surrounding backwaters in the floodplain. 

8.5 Conclusions 

For ground beetles restoration success in terms of an increase in total species richness 

and richness of habitat specialists could be achieved primarily by measures creating 

pioneer patches, for example by river widening, which result in more open banks. For 

instream fauna, shading is regarded an important factor increasing ecological quality of 

the river, because it dampens temperature fluctuations, provides food and offers habitat 

structure. As a result, the development of woody riparian vegetation is a commonly 

applied restoration measure. Our study shows that this measure could be 

counterproductive for the specialist riparian carabid fauna, which requires open habitat. 

If the purpose of restoration includes enhancing the conditions for floodplain biota, some 

open areas should remain present. This could be well combined with providing enough 

shade for the instream fauna, because our results also indicate that the mere presence of 

open habitats is more important than its area. Further research should focus on 

determining optimal conditions of such pioneer habitats, e.g. the maximum vegetation 

cover tolerated. We used 25% cover as the maximum proportion to which the habitat 

was regarded as ‘open’, but we do not know what the optimal proportion is. Also plant 

species composition could be important. Woody vegetation encroachment resulted in a 

decrease in species richness, but maybe there is also an effect of different species of 

herbaceous vegetation. 
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Widening is an appropriate measure in mountain rivers as flooding maintains created 

habitat mosaics and characteristic dynamic riparian areas. For lowland rivers, we suggest 

that the creation of shallow riparian patches is of particular importance as habitat 

turnover and the development of habitat diversity takes longer timespans due to less 

power of the river. Suitable restoration measures should aim on a strong lateral 

connection between the river and its floodplain to guarantee inundation frequency and 

low distance to groundwater to create habitats which are important for typical ground 

beetles for wetlands and wet forests. Thereby, longer time spans for recolonization 

should be mentioned as catchments of lowland rivers are often highly degraded implying 

impoverished species pools of typical species. 
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9. Floodplain vegetation 

9.1 Introduction 

Streams and rivers are used by humans for many different purposes (e.g. for 

hydroelectric power, agriculture, recreation, industry) with negative consequences for 

stream biota due to their vulnerability to flow modifications, habitat degradation and 

water pollution (Poff et al. 1997, Malmqvist and Rundle 2002, Dudgeon et al. 2006). To 

reverse the negative effects of habitat degradation on stream ecosystem structure and 

function, a large number of restoration projects have been implemented in recent years 

(e.g. in North America, Europe, Japan and Australia) (Lake et al. 2007, Feld et al. 2011). 

Restoration measures vary from small restoration projects aiming at improving specific 

instream conditions, e.g. by introducing small riffle habitats, to large projects aiming to 

re-establish features characterizing natural systems, e.g. by reintroducing meanders or 

removing dikes which increases the intensity of processes operating in the land-water 

ecotone, (Palmer et al. 2010) and restorations that target disturbances at the catchment 

level, e.g. by minimizing sediment inputs originating from forest harvesting activities 

across the catchment (Bohn and Kershner 2002).  

Small restoration projects are, by far, the most common practice (Bond and Lake 2003, 

Palmer et al. 2010) but a majority of these projects have not led to recovery of 

biodiversity. While restoring local habitat structures is a prerequisite for species to 

establish at a site, factors that operate at larger spatial scales may also constrain 

restoration success (Palmer et al. 1997, Poff 1997, Bond and Lake 2003). For example, 

large scale disturbances such as past and present landuse in a region or catchment may 

limit the regional species pool available for locally restored sites, and thus, the desired 

effects of restorations may be absent (Harding et al. 1998, Bohn and Kershner 2002, 

Lake et al. 2007, Palmer et al. 2010). Likewise, the dispersal of organisms is a regional 

process influenced by the natural hydrological regime of streams (i.e. the timing, 

duration and magnitude of flow and the rate of change in flow), which may control the 

distribution and abundance of species in restored sites (Poff et al. 1997). Such large 

scale factors may be of overriding importance for the success of local restorations 

implemented at individual sites or reaches (Bond and Lake 2003). Moreover, there is a 

natural time lag between restoration and recolonization which depends on factors such as 

dispersal abilities of the organisms and distance to source populations from the restored 

site (Gore and Milner 1990, Mitsch and Wilson 1996, Huxel and Hastings 1999). 

In the present study, we have a unique opportunity to examine how plant communities in 

European floodplains respond to restoration measures of different extent. We expect that 

restoration extent will be particularly important for structural and functional 

characteristics of the floodplain plant community since species living here are adapted to 

and dependent on a variety of large-scale processes (e.g. flooding and sedimentation) 

that occur under natural variations in flow regime (Gregory et al. 1991). Repeated 

waterlogging and flooding of river banks create and sustain high habitat heterogeneity 

and may also lead to the development of distinct vegetation belts according to 

hydrological gradients ranging from wet to dry conditions as one move further away from 

the shoreline (Gregory et al. 1991). The hydrologic regime is furthermore considered to 

be of overriding importance for the transport and deposition of plant propagules 

(Mahoney and Rood 1998, Merritt and Wohl 2002) that may establish in the areas. As 
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many as >100 million propagules can be transported in free-flowing reaches in a single 

growing season and some disperse long distances (hundreds of km) with the water 

before being deposited further downstream (Nilsson and Grelsson 1990, Andersson et al. 

2000, Merritt and Wohl 2006). However, the dispersal and retention of propagules 

depend both on the presence and characteristics of flooding events (Boedeltje et al. 

2004, Gurnell et al. 2007) and whether structures of the stream reach and local habitat 

allows propagules and sediments to be deposited at river banks (Engström et al. 2009). 

Considering that the flow regime is of great importance for the existence of highly 

diverse riparian communities, targeting large-scale features of stream channels that can 

influence flood-related processes are likely to have a larger effect on riparian plant 

communities than restoration measures which only target local instream habitat 

structures. 

Specifically, we examine and compare the structural and functional response of the 

floodplain vegetation to large restoration projects (i.e. the reconstruction of meanders 

and removal of dikes) vs. small projects (i.e. the reintroduction of coarse substrates into 

the stream channel; Chapter 2 and Annex B) and investigate to what extent restoration 

outcomes are influenced by the underlying stream or river typology (e.g. altitude and 

discharge), catchment land use and time since restoration. Large restoration projects are 

likely to mediate more intense and diverse hydrological interactions across the land-

water ecotone (e.g. by flooding and sedimentation processes) that will improve 

conditions for dispersal and establishment of diverse floodplain communities. We 

therefore expect a greater effect of restoration on species richness, trait diversity and 

trait composition in floodplains where long river sections have been restored compared to 

floodplains of short restored sections. Additionally, we expect  that there will be a time-

dependency in the recovery of the biological communities (Lake et al. 2007) that may be 

prolonged when recolonization occurs from available source communities in the 

landscape (e.g. Mitsch and Wilson 1996, Lake et al. 2007, Nilsson et al. 2014).  

9.2 Materials and methods 

Study sections and sampling methods 

The study sections and reaches as well as sampling methods for the floodplain vegetation 

are described in Annex B and Chapter 2.8. The sampling of the floodplains situated in the 

Netherlands (NL) differed from the standard sampling procedure described above as a 

greater plot size (3 m2 instead of 0.25 m2) was used with only one plot per observed 

vegetation type (following Oberdorfer, 1983, 1992; Ellenberg 1991). However, the 

vegetation in NL sites was highly homogeneous making the area of the sample plot less 

important and we therefore consider the data comparable to those from the other 

European regions.  
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Table 9-1: Short explanation, abbreviations (Abbrev) and references of the 18 traits 

used. 

Trait Categories (if any) Abbrev Expl Unit/Range Ref 

Leaf dry matter content  LDMC  mg/g 1 

Canopy height  CH  m 1 

Seed mass  SM  mg 1 

Specific leaf area  SLA  mm2/mg 1 

Buoyancy  BYC  1-100 1 

Seed number per plant  SNP  N/plant 1 

Ellenberg light  GBEL A 1-9 2, 3 

Ellenberg moisture  GBEF A 1-12 2, 3 

Ellenberg nutrients  GBEN A 1-9 2, 3 

Ellenberg temperature  ET A 1-9 2 

Grime’s competitiveness  GC B 0-1 4, 5 

Grime’s stress tolerance  GS B 0-1 4, 5 

Grime’s ruderality  GR B 0-1 4, 5 

Dispersal type Autochor DLT_AU_p C 0-1 1 

 Hemerochor DLT_HE_p C 0-1 1 

 Meteorochor DLT_ME_p C 0-1 1 

 Nautochor DLT_NA_p C 0-1 1 

 Zoochor DLT_ZO_p C 0-1 1 

Plant growth forms Chamaephyte PGF_CH_pa D 0/1 1, 6 

 Geophyte PGF_GE_pa D 0/1 1, 6 

 Hemicryptophyte PGF_HE_pa D 0/1 1, 6 

 Hydrophyte PGF_HY_pa D 0/1 1, 6 

 Phanerophyte PGF_PH_pa D 0/1 1, 6 

 Therophyte PGF_TH_pa D 0/1 1, 6 

Age of first flowering 1-5 years AFF1_B15 D1 0/1 1 

 > 5 years AFF1_O5 D1 0/1 1 

 ≤ 1 year AFF1_W1 D1 0/1 1 

Plant life span Annuals PLS1_A D2 0/1 1 

 Perennials PLS1_P D2 0/1 1 

Seed bank type Long-term persistent SBT1_LTP D2 0/1 1 

 Short-term persistent SBT1_STP D2 0/1 1 

 Transient SBT1_T D2 0/1 1 

Explanations (Expl): A = indicator value, B = functional signature value, C = proportional expression of trait 

category, D = presence/absence of trait expression with superscript 1 = several categories were reported for a 

species, the lowest reported trait category was used, and superscript 2 = several categories were reported for a 

species, the longest reported trait category was used 

References (Ref): 1 = Kleyer et al. (2008), 2 = Ellenberg et al. (1991), 3 = Hill et al. (2000), 4 = Grime et al. 

(2007), 5 = Hunt et al. (2004), 6 = Raunkiaer (1934). 
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Diversity indices and community weighted means 

All diversity and trait indices were calculated based on average Ord% values per study 

reach (see Chapter 2.8). We calculated taxon richness and Shannon diversity as indices 

of local taxonomical diversity. A number of traits and species indicator values were 

allocated to the encountered species (Table 9-1) and used to calculate trait-diversity and 

community weighted means (CWMs) for each individual trait. These included 

morphological traits (e.g. specific leaf area, seed mass, canopy height), Ellenberg 

indicator values (light, moisture, nutrients and temperature), plant life strategies 

(competitiveness, ruderality, stress tolerance), life history traits (e.g. age of first 

flowering and life span) and dispersal traits such as buoyancy and means of dispersal 

(e.g. autochor, zoochor, nautochor) (Table 9-1). For the categorical traits, we used two 

different approaches when assigning trait values. A proportional trait expression per 

category was calculated if species were known to commonly express more than one trait 

category (e.g. means of dispersal). This was done by dividing each trait expression with 

the sum of all reported trait expressions per species giving species a proportional value 

between 0-1 for each trait category. For all other categorical traits, for which species was 

not to the same extent expected to express more than one category, we instead 

assigned a value of 0 (i.e. absent) or 1 (i.e. present) depending on if the trait was 

expressed for that specific species (Table 9-1).  

Trait diversity and CWMs were then calculated using R package FD (Laliberté and Shipley 

2011). The CWMs were calculated with the function functcomp as: 

    ∑   

 

   
         

where pi is the relative contribution of species i to the community, and traiti is the trait 

value of species i (e.g. Lavorel et al. 2008). 

Trait diversity (functional dispersion or FDis) was calculated with the function fdisp for 

each trait individually. FDis is a multidimensional functional diversity index that is 

weighted by species abundances (Laliberté and Legendre 2010). Thus, the most 

dispersed communities are composed of evenly distributed dissimilar trait categories 

(categorical traits) or trait values (numerical traits).  

Finally, a response ratio (Δr) (Osenberg et al. 1997) for each diversity and trait metric 

was calculated per floodplain as:  

     (
  

  
)  

where Nr is the metric value for the restored reach and Nd is the metric value at the 

control (degraded) reach. Response ratios allowed us to combine and compare the 

results from the different floodplains and identify general pattern in the relative change 

in the metric values (i.e. the metric values for degraded reaches relative to the restored 

reaches) across floodplains. 

 

Statistical analyses 

To determine whether species composition differed between the European regions, Non 

Metric Multidimensional Scaling (NMDS) followed by analysis of similarities (ANOSIM, 

based on both Bray-Curtis and Sørensen dissimilarities) were performed in statistical 
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software PAST (Hammer et al. 2001). NMDS is an ordination method based on ranked 

distances between samples which is highly suitable for ecological data that typically 

contain numerous zero values (Minchin 1987). NMDS was based on the algorithm by 

Taguchi and Oono (2005). ANOSIM is a non-parametric test of significant difference 

between two or more groups, based on any distance measure (Clarke 1993).  

For each metric and restoration type we tested whether Δr was significantly different 

from zero (i.e. higher or lower than zero) using one sample t-tests. A significant result 

was interpreted as a consistent and detectable change in the metric value in degraded 

vs. restored reaches across floodplains. The response ratios were also regressed against 

the four predictor variables altitude, discharge, % agriculture in the catchment and time 

elapsed after restoration. Predictor variables were log10 transformed before analyses to 

approximate normal distribution if necessary. 

Response ratios were compared between short and long restored sections by means of 

two sample t-tests to elucidate whether the response of specific metrics differed and 

restoration effect did depend on restored reach length. 

9.3 Results 

General regional differences between paired restored sections (R1, R2) 

The NMDS ordination showed clear differences in species community structure between 

the European regions where the ten paired long restored (R1) and short restored (R2) 

river sections were located (compare Chapter 1.2) both when ordinations were based on 

Bray-Curtis dissimilarities (ANOSIM; R=0.76, p<0.05) and Sørensen dissimilarity index 

(ANOSIM; R=0.91, p<0.05) (Figure 9-1).  

Figure 9-1: NMDS ordination plots showing differences in plant community composition 

between the 10 European regions in which the paired R1/R2 restored sections are 

located. The ordinations are based on a) Sørensen dissimilarity index (stress: 0.23) and 

b) Bray-Curtis dissimilarity index (stress: 0.24). 
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Overall effect of restoration on floodplain vegetation (R1 and R2 pooled) 

Overall (pooling large and small restoration projects), restoration had a significant effect 

on floodplain vegetation as indicated by the mean response ratios of several 

metrics/traits which were significantly different from zero (Table 9-2). Restoration had a 

small negative effect on leaf dry matter content. Moreover, the share of short lived 

species was higher (significantly larger share of annual species and therophytes) in the 

restored reaches compared to the corresponding unrestored degraded sections. These 

species benefit from disturbances, indicating that restoration increased the frequency of 

disturbances like flooding. However, there was no overall positive effect of restoration on 

species diversity. 

 

Table 9-2: Significant effects of restoration on the floodplain vegetation metrics 

investigated when data on large and small restoration projects were pooled.  

Trait / metric p-value Mean response ratio 

Leaf dry matter content (LDMC) 0.040 -0.04 

Therophytes (PGF_TH_pa) 0.001 +0.82 

Annuals (PLS1_A) 0.019 +0.94 

Perennials (PLS1_P) 0.002 -0.05 

 

Differences of restoration effect in large and small projects (R1 vs. R2) 

There was no significant difference in the response ratios between large and small 

restoration projects on any of the diversity indices or CWMs used (two-sample t-test; 

p>0.05). Besides this group comparison (to test if there were general differences in 

restoration effect between the two groups of large and small restoration projects despite 

regional differences), we originally planned to account for regional differences by limiting 

direct comparisons to the corresponding pairs of large and small restoration projects (see 

Chapter 1.2). However, data on floodplain vegetation was not available for one of the 

small restoration projects, and hence hampering a pairwise comparison. 

 

Responses of diversity and trait composition to restoration in large and small 

restoration projects (R1 and R2 analysed separately) 

We only found very limited effects of restoration analysing response ratios describing 

diversity characteristics of the floodplain vegetation. In the small restoration projects, 

restoration had a significant effect on the dispersion of specific leaf area (SLA) and the 

mean response ratio was significantly larger than zero (mean Δr =0.18; one-sample t-

test; p<0.05) (Figure 9-2), whereas no significant differences were found for any 

diversity indices in the large restoration projects. In contrast, we found that some of the 

response ratios of CWM’s changed significantly depending on restoration extent (Figure 

9-3) suggesting that trait composition responded to restoration and that the responses 

were dependent on restoration extent. We found a significant and relatively large 

decrease in chamaephyte-CWM (mean Δr = -1.05) and a relatively large increase in 

therophyte-CWM (mean Δr = +1.17) in large restoration projects (one sample t-test; 

p<0.05) (Figure 9-3 B). In contrast, we detected a small decrease in perennial-CWM 
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(mean Δr = -0.05) and a relatively large increase in annual-CWM (mean Δr = +1.2) in 

small restoration projects (Figure 9-3 A).  

A: R2 (small restoration projects) 

 

B: R1 (large restoration projects) 

 

Figure 9-2: Mean (± 1SE) response ratios of diversity metrics across floodplains of small 

(R2; N=11) (a) and large restoration projects (R1; N=10) (b). Taxa_S = taxon richness, 

Shannon H = Shannon diversity, X$FDis = functional diversity for trait X. *= mean 

response ratio of the metric is significantly different from zero (p<0.05). 
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A: R2 (small restoration projects) 

 

B: R1 (large restoration projects) 

 

Figure 9-3: Mean (± 1SE) response ratios of trait CWMs across floodplains of small (R2; 

N=11) (a) and large restoration projects (R1; N=10) (b). *= mean response ratio of the 

metric is significantly different from zero (p<0.05). 
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Environmental drivers of responses of diversity and trait composition to 

restoration 

The typology (altitude and discharge) of the stream/river played a significant role for the 

outcome of the restoration (Table 9-3). Here we focus mainly on strong relationships 

being those with Adj R2 > 0.40 and/or relationships that were significant for both, small 

and large restoration projects. In both, small and large restoration projects, we found 

that response ratios of the dispersion of Ellenberg moisture values and plant life 

strategies were positively related to altitude. This suggests that, as altitude increases, 

restoration is more likely to promote the coexistence of plants with different moisture 

preferences and life strategies (competitors, stress-tolerants and ruderals). Additionally, 

altitude was strongly and positively related to the response ratio of phaenerophyte-CWM 

in small restoration projects (Adj R2 =0.50), whereas response ratios of geophyte-CWM 

and long-term persistent seed bank-CWM were strongly and positively related to altitude 

in large restoration projects (Adj R2 = 0.45 and Adj R2 = 0.40, respectively).  

Table 9-3: Adjusted R2 values of correlations between environmental variables related to 

typology (altitude and discharge) and response ratios of community weighted means 

(CWM) and diversity indices in small (R2) and large (R1) restoration projects. Only traits 

with at least one significant correlation are shown. Light grey cells indicate a significant 

negative relationship and dark grey cells indicate a significant positive relationship. 

Shannon H = Shannon diversity, X$FDis = functional dispersion for trait X. 

 

 

 

Altitude Discharge

R2 R1 R2 R1

CWM BYC 0.48

DLT_AU_p 0.33

DLT_ZO_p 0.37

ET 0.34

GBEF 0.29

GR 0.34

GS 0.49

SBT1_LTP 0.40

PGF_GE_pa 0.45

PGF_PH_pa 0.50

PLS1_A 0.39

SM 0.41

SLA 0.38

Diversity Shannon_H 0.33 0.59

BYC$Fdis 0.40

GBEF$Fdis 0.31 0.57

GRIME$Fdis 0.54 0.69

SM$Fdis 0.47

SBT$Fdis 0.40
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In both, small and large restoration projects, the response ratio of Shannon diversity was 

consistently and positively related to discharge, suggesting that there is a higher 

probability of a positive effect of restoration on taxon diversity with an increasing 

discharge (stream size) (Table 9-3). In small restoration projects, we also found that 

discharge was strongly and positively related to the dispersion and CWM of seed mass 

(Adj R2 = 0.47 and Adj R2 = 0.41, respectively). In large restoration projects, we found 

that response ratios of stress tolerance-CWM, Shannon diversity and the dispersion of 

buoyancy was strongly and positively related to discharge, whereas response ratios of 

buoyancy-CWM and the dispersion of seed bank types were negatively related to 

discharge (Table 9-3). 

 

Figure 9-4: Significant correlations between predictor variables (% agriculture in the 

catchment and time after restoration (TAR)) and response ratios of community weighted 

means and functional dispersion (FDis) in short restored sections (R2). Adjusted R2 

values (R2) are reported in the upper or lower right hand corner of each figure. 

 

Besides typology, we also found that time after restoration (TAR) and agricultural land 

use in the catchment played a significant role for the outcome of the restoration projects 

expressed in terms of diversity and trait composition of the floodplain communities and, 

additionally, that the significance and strengths of the relationships differed between 

restoration types. In small restoration projects, response ratios of both CWM and 

dispersion of seed numbers per plant were strongly and negatively related to TAR (Adj 

R2=0.52 and Adj R2=0.50, respectively; Figure 9-4). Significant relationships between % 
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agriculture and response ratios of autochor-, meteorochor-, Ellenberg light- and 

geophyte-CWM’s were also detected in small restoration projects (Figure 9-4). In large 

restoration projects, stress tolerant-CWM was strongly and negatively related to TAR (Adj 

R2=0.63) (Figure 9-5) and we also found moderate-strong positive relationships between 

TAR and response ratios of taxon richness (Adj R2=0.26; P=0.078), Ellenberg N-CWM 

(Adj R2=0.27, P=0.069) and competitor-CWM (Adj R2=0.28, P=0.067). Similarly to the 

pattern observed in small restoration projects, the response ratio of geophyte-CWM was 

negatively correlated with % agriculture in large restoration projects (Adj R2=0.41; 

Figure 9-4 and Figure 9-5). We did not find any significant correlations between % 

agriculture and diversity indices in either small or large restoration projects (Figure 9-4 

and Figure 9-5). 

 

Figure 9-5: Significant correlations between predictor variables (% agriculture in the 

catchment and time after restoration (TAR)) and response ratios of community weighted 

means in long restored sections (R1). None of the diversity indices were significantly 

correlated with TAR and % agriculture and thus not shown. Adjusted R2 values (R2) are 

reported in the upper or lower right hand corner of each figure. 

 

9.4 Discussion 

Overall effect of restoration and differences between large and small 

restoration projects  

In this study, we aimed to identify general patterns in community responses to 

restoration across large environmental gradients in European floodplains and to compare 

responses in floodplains where restoration targeted local scale factors such as instream 

substratum composition vs. large scale factors such as channel morphology features. Our 

results showed that not only species composition (Figure 9-1), but also the responses of 

plant diversity and trait composition to restoration varied substantially between the 

European regions. As a consequence of this high variability across the floodplains, only a 

few general responses to restoration could be detected. For example, we found a 

significant and relatively large decrease in the abundance of chamaephytes and a 
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relatively large increase in the abundance of therophytes in large restoration projects 

compared to corresponding non-restored control sections. The Ranunkiær life forms 

indicate the position and degree of protection of the growth points (buds) from where the 

plant can regrow and is considered to be a good indicator of disturbance (e.g. Van der 

Maarel and Franklin 2013). Indeed, previous studies have found differences in life form 

composition between floodplains exposed to varying disturbance (flooding) regimes 

(Glaeser and Wulf 2009, Wang et al. 2014). For example, phaenerophytes have been 

shown to decrease while short lived species such as therophytes benefit from 

disturbances and thus increases in response to flooding (Glaeser and Wulf 2009, Wang et 

al. 2014). Further, Wang et al. (2014) investigated the effect of winter flooding following 

dam regulation in the Three Gorges Reservoir (China) and found the lowest proportion of 

chamaephytes in low elevation sites, which were greatly affected by flooding, and the 

highest proportions in high elevation sites, which were little affected by flooding. Thus, it 

is possible that the detected changes in the relative abundances of chamaephytes and 

therophytes are an effect of increased flooding disturbance of riverbanks in the large 

restoration projects.  

We also observed a decrease in the abundance of perennials and an increase in the 

abundance of annuals in the small restoration projects. Annual growth form in plants is 

often associated with highly disturbed environments (e.g. due to fast growth rates and 

early and prolific seed set) while perennials usually dominate along more stable channels 

(e.g. Grime 1979, Pettit et al. 2001). Small restoration projects were not to the same 

extent as large restoration projects expected to mediate more intense and diverse 

hydrological interactions across the land-water ecotone (e.g. by flooding and 

sedimentation processes) and the higher abundance of annuals in response to small scale 

restoration was therefore unexpected. However, the observed response might reflect that 

reconstruction of instream habitat structures (e.g. riffles) have disturbed also the river 

banks and created open space for the establishment of annual plants. 

 

Differences between river types 

In our study, the response of Shannon diversity was positively correlated with discharge 

in both small and large restoration projects suggesting that high discharge may facilitate 

species establishment in restored sections independent of the extent of restoration. 

Discharge was also positively related to the response ratio of buoyancy dispersion and, at 

the same time, negatively related to the response ratio of buoyancy-CWM in large 

restoration projects. This suggests that (i) as discharge increase, species with contrasting 

floating capacity are more likely to colonize the restored sections and (ii) the apparent 

trait divergence in the restored sections is largely due to an increased abundance of 

species with low floating capacity in restored sections of larger rivers. This finding is in 

line with previous studies showing that mean and maximum dispersal distances of 

propagules increase with an increasing discharge (Nilsson et al. 2010) thereby facilitating 

the overall passive dispersal of plants by water. Consequently, the probability of 

encountering a community with wide buoyancy range (including species with low floating 

capacity) is likely to increase with increasing discharge provided that suitable habitats 

are available for colonization and establishment (e.g. created by restoration). 

Additionally, our findings indicate that a low proportion of riparian species with a high 

floating capacity establish in large restored rivers. Other studies have attributed similar 
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effects to an impoverished sediment seed pool in agricultural landscapes (Baattrup-

Pedersen et al. 2013a, Baattrup-Pedersen et al. 2013b). However, our study suggests 

that such effects are equally likely to be dependent on factors related to stream size (e.g. 

discharge). 

The response ratios of Ellenberg moisture and plant life strategy dispersion increased 

with increasing altitude indicating that species with different moisture preferences and 

life strategies are more likely to coexist in restored, high altitude rivers. While it is 

difficult to assess the exact cause behind this result, we suggest two explanations to the 

observed altitudinal patterns that are not necessarily mutually exclusive. First, local 

environmental characteristics may be more diverse in high altitude restored sections. In 

this study, restoration projects in high altitude river sections mainly aimed at widening 

the stream channels that may have resulted in greater habitat diversity compared to 

instream and remeandering measures mainly applied in low altitude restoration projects 

and additionally, flashier hydrological regimes and greater stream flow in mountain areas 

can lead to faster habitat turnover with subsequent effects on the riparian communities. 

Second, greater regional diversity in high altitude river sections may allow for 

colonization of species with wider ranges in moisture preferences and life strategies. This 

could indicate that anthropogenic disturbances is generally less intense in high altitude 

regions (i.e. at larger geographical extents than individual catchments) which allows for 

higher regional species diversity and, hence, more incoming species to the areas (e.g. 

Fischer and Lindenmayer 2007).  

 

Constraining effect of catchment pressures 

Large scale anthropogenic disturbances and landscape fragmentation can limit the 

species pool available for local river sections (e.g. Fischer and Lindenmayer 2007) and 

weaken biological responses to local environmental conditions. Consequently, factors 

such as regional or catchment land use can be important determinants of restoration 

“success” (e.g. Palmer et al. 1997, Bond and Lake 2003, Lake et al. 2007). Here, we 

show that an increased agricultural intensity in the catchment directly affects the 

response of trait composition of the floodplain community (i.e. growth form, dispersal 

strategies and light preferences) suggesting that any changes in these traits that may 

develop in response to restoration risk to be masked in catchments with high agricultural 

intensity. Of particular interest we found that response ratios of geophyte-CWM 

decreased with increasing agriculture, which may reflect that geophytes respond 

negatively to grazing and in particular phosphorous availability - factors which are both 

highly associated with agricultural intensity (Dorrough and Scroggie 2008).  

In contrary to our expectations, responses of all the diversity metrics used to 

characterize the floodplain vegetation were unrelated to catchment scale disturbances. 

However, disturbances occurring at larger spatial scales (stream network, bioregion) 

(Poff 1997) or even historical disturbances may more strongly affect present day 

diversity than present day disturbances (Harding et al. 1998, Lindborg and Eriksson 

2004). Thus, while we provide some evidence that catchment scale disturbances 

influence community response when analysing trait composition, it is possible that 

expected effects on diversity are masked by factors operating at much larger spatial 

scales and/or over longer time periods (e.g. Nilsson et al. 2014). 
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Time lag of biological response 

A time lag in the response of biota to restoration is always expected, since time is 

required for species to recolonize the restored sections. The time required may, however, 

differ between species (Trexler 1995) due to differences in dispersal potential or between 

target sections due to factors such as source community proximity and connectivity in 

the landscape (e.g. Lake et al. 2007).  

Our study shows that time after restoration was able to predict changes in trait 

composition, but to a lesser extent changes in diversity. None of the diversity indices 

increased significantly over time in the restored sections even though a positive 

relationship of moderate strength (Adj R2=0.26) with taxon richness was detected 

(P<0.1) in large restoration projects. However, while positive relationships between 

riparian plant richness and time after restoration have been observed in some systems, 

the time scale which we were investigating (1-20 years) may be far below what is 

needed for full community recovery (Nilsson et al. 2014). Further, effects on diversity 

may be delayed by time-lags in the recovery of environmental conditions that the 

restoration measures were unable to target (Hamilton 2012).  

For example, in this study, we observed a strong decreased response of stress tolerance-

CWM over time and a moderate-strong positive response of competitor- and Ellenberg N-

CWM over time – a pattern which was not observed in small restoration projects. This 

suggests that an eutrophication of the restored sections in the large restoration projects 

may have occurred over time, possibly delaying or hindering the expected positive 

effects on plant diversity by increasing the dominance of productive taxa that may inhibit 

the establishment of others. Importantly, this pattern was not observed along the 

agricultural gradient suggesting that the restoration itself can lead to higher 

concentrations of nutrients over time.  

While this observation may seem counterintuitive, the observed pattern can be explained 

by an altered hydrology. Internal releases of nutrients can be induced by an increased 

flooding of previously nutrient rich dry soils and sediments (Hamilton 2012) that may 

increase the productivity of the community following restoration. Moreover, nutrients can 

be stored in groundwater reservoirs for long time periods and thus, time lags in the 

response of stream water chemistry to restoration may be as long as decades (Hamilton 

2012) which can further delay responses of the riparian vegetation. Another 

complementary explanation to this pattern is that diverse habitats might have been 

successfully created early after the restoration but that these habitats were not 

maintained over time. For example, discharges might not have been strong enough to 

sustain dynamic patches (due to e.g. flow regulations of adjacent river sections in the 

catchments or upstream river conditions) and thus, later successional stages (i.e. more 

competitive species) were gradually becoming more dominant in the restored reaches. 

9.5 Conclusions 

Our results showed that not only species composition but also the responses of plant 

diversity and trait composition to restoration varied substantially between the European 

regions. As a consequence of this high variability across the floodplains only a few 

general responses to restoration could be detected. These responses were related to 

changes in trait composition, while general effects on diversity were limited (small 

restoration projects) or absent (large restoration projects). Interestingly, the detected 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 144 of 240  

responses were specific to restoration extent (small vs. large restoration projects) and 

included changes in the relative abundance of traits previously known to respond to 

disturbance (e.g. plant growth form and life span). The apparent high variability in 

response ratios could be attributed to factors related to river typology (discharge and 

altitude), catchment scale disturbance and time after restoration which were strongly and 

significantly related to the plant community response to restoration. These strong 

relationships may partly explain why no general effects of restoration on diversity indices 

were detected. However, communities may also need considerable more time to establish 

and an increase in diversity may not be seen within the time frame investigated here. 

Finally, it is likely that additional confounding environmental and/or spatial factors that 

operate at much larger spatial scales than what was considered in this study further 

delays/masks expected effects on diversity. 
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10. Stable isotopes  

10.1 Introduction  

Rivers are being restored worldwide with the aims to enhance biodiversity and ecosystem 

services (Pander & Geist 2013). Effects of river restoration can principally be monitored 

with a wide range of variables. Currently, parameters used to assess success or failure of 

restoration projects are mainly of structural nature, e.g. the composition of biological 

assemblages. In the context of the EU Water Framework Directive fish, phytoplankton 

and benthic fauna and flora are most commonly investigated and the response of these 

assemblages to hydromorphological restoration is well understood (Lepori et al. 2005, 

Jähnig et al. 2010, Sundermann et al. 2011, Lorenz et al. 2012, Friberg et al. 2014). 

Functional components, even though widely applied in ecological studies dealing with 

aquatic systems (e.g. vander Zanden & Rasmussen 1999, Hieber & Gessner 2002, 

Dudgeon et al. 2006 Fischer et al. 2005, Friberg et al. 2009, Gücker et al. 2009), are less 

commonly used for monitoring the effects of river restoration.  

Implicitly, hydromorphological restoration of rivers aims at enhancing habitat diversity 

and aquatic-terrestrial linkages. Therefore, significant alterations of food web structure 

and trophic relationships can be assumed: A higher diversity of niches can contribute to 

more complex food webs, as a higher variety of resources is available to consumers 

enabling more trophic linkages. A stronger connection of river and floodplain, e.g. caused 

by a more shallow profile, will increase inundation frequency and thus the matter flow 

from land to water might be increased, as inundations may wash terrestrial nutrients into 

the river. A shallow profile will also enhance the transport of organic matter from the 

river to its floodplain. At the same time, it will also make aquatic prey more easily 

accessible to riparian predators.  

Stable isotope composition of carbon and nitrogen (δ15N and δ13C) are commonly used to 

study food web structure as they provide information on the material assimilated by 

organisms. δ15N trophic fractionation changes about +3‰ between trophic levels 

(Minagawa & Wada 1984, Post 2002, McCutchan et al. 2003). Thus, it is generally used 

to calculate the trophic position of an organism. δ13C trophic fractionation is less, 

changing only 0-1‰ from source to consumer (DeNiro & Epstein 1978, McCutchan et al. 

2003). δ13C also varies between different producers, thus it is often used as an indicator 

for sources within a food web, e.g. to identify if consumers are feeding on allochthonous 

or autochthonous sources. Hence, stable isotopes of carbon and nitrogen provide 

information on assimilated sources and trophic relations, which integrate spatial and 

temporal scales. Recently, a number of community-wide metrics have been introduced 

by Layman et al. (2007a) to gain more quantitative information from stable isotope data 

at the species or community level. These metrics have been used to quantify niche width 

and study the effects of impacts such as ecosystem fragmentation (Layman et al. 2007b). 

We applied stable isotope analysis of 15N and 13C in context of river restoration to 

quantitatively characterize patterns in trophic structure. We sampled different 

components of food webs on paired restored and degraded sections of rivers in 20 

different catchments throughout Europe. Two types of restoration projects were 

investigated; comprehensive large projects where a large restoration effort was put in 

place and smaller projects relying on mainly single restoration measures. The restored 

sections were compared to degraded “control sites” that are located upstream of the 
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restored sections. The sampling included elements of the resource base (particulate 

organic matter, most abundant aquatic and riparian plant material, periphyton), 

macroinvertebrates comprising at least the dominant taxa within different functional 

feeding groups as well as predatory riparian and non-riparian arthropods. In the study 

presented here, we focused on macroinvertebrate communities as commonly applied 

indicators of ecosystem health. We used two of the metrics introduces by Layman et al. 

(2007a): Nitrogen-range (∆15N) and carbon-range (∆13C) of the dominant feeding types 

of macroinvertebrate communities to quantify changes in trophic structure between 

restored and degraded sections. 

We assumed that the complexity of a food web increases with restoration as a 

consequence of habitat diversity. We further assumed that large restoration projects 

have a stronger effect on food web composition compared to small restoration projects, 

as they increase habitat diversity more strongly. These assumptions are based on the 

consideration that habitat diversity corresponds to the availability of autochthonous food 

sources and to more diverse assimilated resources, e.g. based on more intense 

interconnections of water and land. For instance, restoration might result in shallower 

profiles and thus enhance the availability of allochthonous material.  

Specifically, we tested the following hypotheses 

 Trophic length of the macroinvertebrate community increases with habitat 

complexity and hence the degree of restoration (reflected by ∆15N of 

macroinvertebrate feedings types). 

 The diversity of basal resources increases with the degree of restoration, making 

a greater range of carbon sources available to macroinvertebrates (reflected by 

∆13C of macroinvertebrate feedings types). 

10.2 Material and methods 

Study design 

In ten regions across Europe we sampled four river sections: one river section of a large 

restoration project (R1), one section of a small restoration project (R2) and non-restored, 

degraded sections directly upstream of the restored sections (D1, D2, see Chapter 1.2 

for more detailed information on the general study design). Representative samples of 

the food web components were collected to identify effects of restoration on patterns in 

trophic structure. Samples contained elements of the resource base (particulate organic 

matter, aquatic and riparian plant material, periphyton), the most abundant 

macroinvertebrates representing different functional feeding groups as well as riparian 

and non-riparian arthropods. We tested for large-scale, general patterns influencing 15N-

enrichment and used isotope-biplots to visually describe differences between restored 

and degraded sections. Here, we initially focused on macroinvertebrate communities and 

calculated nitrogen- and carbon range (∆15N and ∆13C). First, all community members 

with their corresponding δ13C- and δ15N-values were considered. Second, we classified 

macroinvertebrates into functional feeding groups and used average values of this a 

priori grouping to calculate ∆15N and ∆13C. 
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Study sections and sampling methods 

The study sections and reaches as well as sampling methods and laboratory analysis for 

the stable isotopes are described in Annex B and Chapter 2.9. 

Samples from Switzerland and the Netherlands were affected by sampling and 

conservation errors and delivered no reliable results in respect to our analysis approach  

presented here. They were omitted from further analysis. 

 

Data analysis 

To visually test for large-scale impacts (latitude, altitude, geology and land use intensity) 

influencing carbon and nitrogen enrichment, we plotted δ13C and δ15N of all components 

(food sources, macroinvertebrates as well as riparian and non-riparian arthropods) 

against latitude.  

To analyse isotopic composition of macroinvertebrates, the data was plotted in carbon-

nitrogen-biplot-space. To test for restoration effects on macroinvertebrate communities, 

we used two community-wide metrics introduced by Layman et al. (2007a): Nitrogen-

range (∆15N) was calculated with maximum (δN) – minimum (δN) and carbon-range 

(∆13C) with maximum (δC) – minimum (δC). First, these two metrics were calculated 

considering all community members with their corresponding δ13C- and δ15N-values 

(subsequently referred to as absolute values). Second, we classified the 

macroinvertebrates into five feeding groups (predators, shredders, grazers, collector-

filterers, collector-gatherers) based on Schmidt-Kloiber & Hering (2012) and used the 

corresponding average values of the feeding groups to calculate ∆15N and ∆13C again 

(subsequently referred to as mean values).  

Metrics were compared between restored and degraded sections (R vs. D) as well as 

between large and small restoration projects compared to the corresponding degraded 

sections (R1 vs. D1 and R2 vs. D2). We then calculated the difference between the 

metric values of each restored (R) and corresponding degraded (D) section; these 

differences were then compared between the large (R1/D1) and small (R2/D2) 

restoration projects. Differences were tested with the Wilcoxon matched pairs test.  

For the analysis we used the following software: We visualized large-scale patterns using 

OriginPro 9.0. For the visualization in isotope-biplots as well as the calculation of 

community-wide metrics we used the package Stable Isotope Analysis in R (SIAR: Parnell 

et al. 2008, 2010) in R (R Development Core Team, 2007). The further statistical 

analyses for pairwise comparison were run using Statistica 8 software from StatSoft. 

10.3 Results 

General patterns  

Enrichment of 15N within the given dataset showed clear differences between countries 

(Figure 10-1), with higher δ15N-enriched samples in mid-latitudes (Germany, Netherlands, 

Czech Republic, Sweden, Denmark and Poland). Samples taken in alpine regions (Austria 

and Switzerland) as well as those in high latitudes (Finland) were less enriched in δ15N. 

There was also a corresponding difference in δ13C enrichment, though less obvious.  
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Figure 10-1: δ13C and δ15N of dataset plotted against latitude (grey: areas with high 

δ15N-enriched samples; blue: areas with less δ15N-enriched samples). 

 

Trophic structure 

As an example for isotopic composition of food web components in restored and 

degraded sections, the results for the river Drau in Austria (R1 and D1) are shown in 

Figure 10-2. ∆15N and ∆13C of the respective macroinvertebrate communities were 

calculated for both sections: ∆15Nrestored was higher (4.56‰) than ∆15Ndegraded (3.23‰) 

suggesting that the trophic length of the macroinvertebrate community was higher in the 

restored compared to the degraded section. Furthermore ∆13Crestored was higher (3.93‰) 

than ∆13Cdegraded (1.67‰) suggesting that macroinvertebrates in the restored section 

were using a wider spectrum of basal sources.  
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Figure 10-2: δ13C and δ15N of producers (white symbols; mean), riparian and non-

riparian arthropods (black symbols; mean) and macroinvertebrates (red symbols; mean) 

for a) restored and b) degraded sections of river Drau (Austria). Macroinvertebrates 

were classified to feeding-types: predator, shredder, grazer, collector-filterers and 

collector-gatherers. Collector-gatherer were not present at degraded site. All values 

shown are means of several samples. 

 

Effects of river restoration on isotopic composition of macroinvertebrates 

The pairwise comparison of macroinvertebrate communities between restored (R) and 

degraded (D) sections showed minor differences for both absolute and mean values of 

∆15N and ∆13C (Figure 10-3a,b, Figure 10-4a,b). Differences between restored and 

degraded sections were not significant (Wilcoxon Matched pairs test).  

  

Figure 10-3: Comparison of a) ∆15N and b) ∆13C of macroinvertebrate communities for 

restored and degraded sections (n = 16) based on absolute values (i.e. all community 

members with their corresponding δ13C- and δ15N-values are considered; not grouped 

into feeding types). 

a) b) 
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Figure 10-4: Comparison of a) ∆15N and b) ∆13C of macroinvertebrate communities for 

restored and degraded sections (n = 16) based on mean values (i.e. macroinvertebrates 

were grouped into five feeding types and the corresponding mean values of the feeding 

types were used).  

 

Effects of large and small restoration projects on isotopic composition of 

macroinvertebrates  

The pairwise comparison between the four groups of sections (large restoration projects: 

R1; corresponding degraded sections: D1; small restoration projects: R2; corresponding 

degraded sections: D2) showed minor differences for Δ15N (Figure 10-5a). In contrast, 

Δ13C differed significantly between R1 and D1 (Wilcoxon Matched pairs test, p < 0.05) 

with larger Δ13C for R1 when considering the absolute values of macroinvertebrates 

(Figure 10-5b). When considering mean values of macroinvertebrates grouped into 

feeding types and comparing Δ13C of the feeding types, there was no significant 

differences in Δ13C (Figure 10-6b). 

 

Figure 10-5: a) Δ15N and b) Δ13C of macroinvertebrate communities for sample sets of 

R1, D1, R2 and D2 (n=8). Pairwise comparison of R1/D1 and R2/D2 using Wilcoxon 

Matched pairs test (* p<0.05). The analysis is based on absolute values (i.e. all 

community members with their corresponding δ13C- and δ15N-values are considered; not 

grouped into feeding types).  

 

a) b) 

b) a) 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 153 of 240  

 

Figure 10-6: a) Δ15N and b) Δ13C of macroinvertebrate communities for sample sets of 

R1, D1, R2 and D2 (n=8). The analysis is based on mean values (i.e. macroinvertebrates 

were grouped into five feeding types and the corresponding mean values of the feeding 

types were used).  

 

As expected, the pairwise calculated differences between the metric values of R1 minus 

D1 and R2 minus D2 showed similar patterns (Figure 10-7, Figure 10-8). Here, values 

above zero indicated enhanced Δ15N respectively Δ13C in trophic structure. Most obvious 

was the larger Δ13C in R1 (Figure 10-7b). However, differences between R1 and R2 were 

not significant (Wilcoxon Matched pairs test, p = 0.89 for Δ15N, p = 0.12 for Δ13C). 

 

Figure 10-7: Comparison of differences between the long (R1/D1) and short (R2/D2) 

restored sections for a) Δ15N and b) Δ13C of macroinvertebrate communities; difference 

was pairwise calculated between restored and corresponding degraded sections (R1-D1 

and R2-D2) based on absolute values (i.e. all community members with their 

corresponding δ13C- and δ15N-values are considered; not grouped into feeding types). 

 

a) b) 

b) a) 
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Figure 10-8: Comparison of differences between the large (R1/D1) and small (R2/D2) 

restoration projects for a) Δ15N and b) Δ13C of macroinvertebrate communities; 

difference was pairwise calculated between restored and corresponding degraded 

sections (R1-D1 and R2-D2) based on mean values (i.e. macroinvertebrates were 

grouped into five feeding types and the corresponding mean values of the feeding types 

were used).  

 

10.4 Discussion 

The dataset was subject to large-scale patterns on a European level. Samples taken in 

mid-latitudes (Germany, the Netherlands, Sweden, Denmark, Poland and Czech Republic) 

were more enriched in 15N than samples from alpine regions (Austria and Switzerland) 

and from high latitudes (Finland). Different land-use intensity (e.g. fertilizer application) 

might have been a reason for the higher 15N enrichment, as reflected by the high values 

in the Netherlands and Germany. In this study, we did not analyse the large-scale 

patterns in detail as this will be done in upcoming studies. The results, however, 

underlined the necessity to limit comparisons to sites within a region, as large-scale 

differences possibly masked the effects of restoration. 

The river Drau (Figure 10-2) showed higher Δ15N and Δ13C for the macroinvertebrate 

communities at the restored section compared to the degraded section. This supported 

our hypotheses that trophic length (indicated by Δ15N) as well as diversity of assimilated 

food sources (indicated by Δ13C) increase with restoration. However, an increased trophic 

length (Δ15N) only appeared in single cases. The overall difference between restored and 

degraded sections, however, was not significant neither using absolute nor mean values 

of macroinvertebrate communities. Our first hypothesis was therefore rejected. In both 

restored and degraded sections, the Δ15N of the macroinvertebrate communities was 

almost within the limits of a single trophic level.  

When using absolute values (i.e. considering all community members and not grouping 

them into feeding types), Δ13C was significantly larger in large restoration projects (R1) 

compared to the corresponding degraded sections (D1), suggesting that 

macroinvertebrates were feeding from more diverse sources. The comparison of Δ13C 

between R2 and D2 showed almost no difference. This implies that diversity at the 

resource base was positively related to restoration extent, thus confirming our second 

hypothesis.  

a) b) 
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The results of our analysis were partly determined by the type of data used: Significant 

differences in Δ13C between R1 and D1 were only obtained with absolute values. Mean 

values of the feeding types possibly reduced the corresponding nitrogen and carbon 

ranges since outliers were less influential, while absolute values (i.e. original values, not 

grouped into feeding types) consider outliers more strongly, resulting in larger ranges. 

For instance, we sampled only few large predators. Averaging the corresponding isotope 

concentrations with values from a larger number of small and medium sized predators 

results in relatively low values. In fact, the outliers might reflect a higher diversity of the 

resource base, as stated in our second hypothesis. Consequently, outliers might be a 

result of restoration as the corresponding macroinvertebrates assimilated sources that 

were only present at the restored sections.  

We limited sampling to the dominant taxa of each component to gain a representative 

overview of food web structure and aquatic-terrestrial interaction and to test for 

differences between restored and degraded sections. For a detailed construction of the 

food webs using mixing models (Brauns et al. 2011) a more extensive sampling, 

considering all potential food sources and consumers would be necessary (Brauns et al. 

2011). But even a comprehensive sampling could be subject to sampling errors, as in 

mid-sized rivers external factors such as drift are important and need to be considered. 

For the construction of detailed food webs a habitat-specific approach should be used.  

 

10.5 Outlook 

In the next set of analysis we will focus on large-scale patterns within our dataset. For 

example we will test for correlation between land use (especially usage of fertilizers) and 
15N enrichment in the food webs. Also effects of different geological and/or soil 

characteristics on 13C will be tested.  

Furthermore, we will test which environmental parameters impact the trophic structure of 

macroinvertebrate communities, e.g. river characteristics like altitude, discharge or 

substrate and restoration characteristics like restoration size, time since restoration and 

type of restoration. In addition, we will also take the other sampled components of the 

food web into account (food sources, riparian arthropods and non-riparian arthropods). 

When considering riparian arthropods, we will also test for effects of restoration on 

trophic interaction between the river and its riparian zone as well as general patterns in 

feeding preference of riparian arthropods. Paetzold et al. (2005) already described that 

beetles in riparian zones feeding on aquatic prey and Collier et al. (2002) described 

similar effects for spider predation. So we would like to investigate if restoration 

increases the content of aquatic prey in the diet of these riparian arthropods due to a 

stronger connection of the river and its riparian zone (e.g. caused by a more shallow 

profile that will increase inundation frequency and thus the transport of organic matter 

from the river to its floodplain. A shallow profile will also make aquatic prey more easily 

accessible to riparian predators).  

The Bayesian approach as described by Layman et al. (2007a) will be applied on our data 

as well. Furthermore, we will test other community-wide metrics introduced by Layman 

et al. (2007a) to describe trophic structure: Total area (TA), mean distance to centroid 

(CD), mean nearest neighbour distance (MNND) and standard deviation of nearest 

neighbour distance (SDNND).  
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11. Summary and conclusions 

11.1 Study objectives 

The main objectives of the study were: 

(i) Quantify and compare the effect of restoration on different response variables (habitat 

composition in the river and its floodplain, three aquatic organism groups, two floodplain-

inhabiting organism groups, food web composition and aquatic land interactions as 

reflected by stable isotopes). Comparing different response variables allows to draw 

conclusions on the general effect of restoration on habitats and biota. We hypothesized 

that floodplain-related variables (e.g. floodplain vegetation, ground beetles, floodplain 

and riparian habitats) respond more strongly to restoration, and variables related to the 

river itself (e.g. fish, benthic invertebrates, substrate diversity) respond weakly, as they 

are more strongly influenced by catchment-scale stressors, e.g. through water quality. 

(ii) Identify variables which either constrain or enhance the effect of restoration, i.e. 

identify conditions which favour restoration success. We especially focused on the 

potential positive mitigating effect of restoration extent since longer sections or more 

intense restoration might buffer negative impacts from upstream large-scale stressors 

(e.g. fine sediment input), provide the necessary minimum area for viable populations, 

and allow habitats to be created by natural channel dynamics, i.e. sustainable habitat 

creation. Therefore, we assumed strong effects of restoration extent for organism groups 

which depend on large-scale stressors (e.g. benthic invertebrates), depend on 

hydromorphological processes requiring a certain section length (several instream 

habitats), and have a larger home range (fish). In contrast, weakest effect of restoration 

extent was expected for riparian and floodplain biota and habitats, as strong effects of 

restoration have been documented already in small restoration projects. 
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11.2 Summary of results 

Comparing dissimilarity of restored and degraded sections for different 

response variables 

 Quantify restoration effect: 

o Ground beetles were most strongly responding to restoration, followed by 

fish, floodplain vegetation, benthic invertebrates and aquatic macrophytes. 

Floodplain and aquatic habitats as well as stable isotope signatures differed 

less strongly between the restored and corresponding unrestored degraded 

sections.  

 Conditions favouring restoration success: 

o Restoration extent: There was no significant difference in the response to 

restoration between the large and small restoration projects for none of 

the response variables, except for the food web interactions.  

o Substrate diversity: The responses of benthic invertebrates, aquatic 

macrophytes and all recorded morphological response variables (flow 

diversity, floodplain habitats) were greater in restored sections with larger 

changes in substrate composition as compared to those with smaller 

changes, and differences were nearly significant for fish. 

 Conclusions: 

o We conclude that restoration extent was still too small (e.g. restored reach 

length was usually shorter than 2 km) for effects of restoration extent on 

biota. Changes in substrate composition, however, significantly affected 

aquatic organism groups, while small changes in substrate composition 

were already sufficient for ground beetles. 

 

Hydromorphology 

 Quantify restoration effect: 

o There was no overall significant difference between different spatial scales 

but results indicated that the effect of restoration on hydromorphology was 

largest at the section and reach scale, i.e. on macro- and mesohabitat 

diversity Effects on aquatic microhabitats were less pronounced and 

especially small on substrate diversity, which is of special importance for 

macroinvertebrates. Only in few restoration projects substrate diversity 

was significantly increased due to restoration. 
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 Conditions favouring restoration success: 

o Restoration extent: The effect of restoration on hydromorphology was not 

significantly higher in large compared to small restoration projects. 

However, there was a tendency for a higher effect of restoration on macro- 

and mesohabitats in large restoration projects. Especially the effect on 

mesohabitat diversity was higher in larger restoration projects: channel 

features like islands, banks and bars were more frequent and increased 

heterogeneity along the cross section, while the river bed itself remained 

the dominant channel feature in small restoration projects. In contrast, 

large and small restoration projects did not differ in respect to microhabitat 

diversity. 

o Restoration measures: The effect of restoration did not significantly differ 

between the restoration measures. However in general, widening had a 

higher effect on macro- and mesohabitats compared to remeandering and 

instream measures. This was possibly due to the natural channel dynamics 

restored by the removal of bank fixation and creation of secondary 

channels. In contrast, there was no such tendency for different effects of 

restoration measures on microhabitat diversity.  

o River type: There was a general trend for a higher effect of restoration on 

macro- and mesohabitats in gravel-bed compared to sand-bed rivers, but 

differences were not statistically significant. Moreover, restoration even 

had a significant negative effect in some restored sections if restoration 

projects were analysed separately. This could be partly due to the focus of 

the survey method on channel features and substrate conditions typical for 

gravel-bed rivers. In contrast, the habitat diversity in sand-bed rivers, 

which is far more dependent upon riparian vegetation and large wood, is 

possibly not adequately considered by the survey method.  

o Project age (time between implementation of the measures and 

monitoring): The effect of restoration on aquatic habitat conditions 

increased with project age. This might be due to restored channel 

dynamics increasing habitat quality over time. However, higher aquatic 

habitat quality might also simply be due to the fact that old projects were 

mainly located in gravel-bed rivers and applied widening as the main 

restoration measure, which generally had a higher effect.  

 Conclusions:  

o Overall, we found only few general significant effects and differences 

between the large and small scale measures. However, results indicated 

that restoration increased macro- and mesohabitat diversity but had a 

limited effect on microhabitat conditions, especially on substrate diversity. 

There was a tendency for widening measures, projects in gravel-bed rivers, 

and older projects having a higher effect on macro- and mesohabitats but 

differences were not significant. Furthermore, the results revealed the 

need to consider adequate hydromorphological parameters for monitoring 

sand-bed rivers in the future. 
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Macroinvertebrates 

 Quantify restoration effect: 

o Restoration had no overall positive effect on macroinvertebrate richness 

and diversity. Variability of restoration effect was especially high for 

macroinvertebrate richness, demonstrating that some projects indeed 

increased the number of taxa but other lead to a substantial decrease in 

species richness. 

o The effect on macroinvertebrate richness and diversity was significantly 

higher in projects increasing microhabitat diversity, indicating that the 

overall low effect of restoration on macroinvertebrates was mainly due to 

the low effect on microhabitat diversity. However, a small increase in 

microhabitat diversity already had a relatively high effect on richness and 

further increasing it did not further increase richness, which indicated that 

other factors might have constrained the effect of restoration. 

 Conditions favouring restoration success: 

o Restoration extent: The effect of restoration on macroinvertebrates was 

not significantly higher in large compared to small restoration projects. 

Moreover, restoration had no significant positive effect on richness and 

diversity, neither for the large nor for the small restoration projects.  

o Restoration measures: There was a tendency for a higher effect of 

restoration on macroinvertebrate richness in widening projects compared 

to projects which applied less intensive measures but differences were not 

statistically significant. 

o River type: There was a tendency for a higher effect of restoration on 

macroinvertebrate richness in gravel-bed compared to sand-bed rivers but 

differences were not statistically significant. 

 Conclusions: 

o Apparently, the extent and measures applied in the restoration projects 

investigated was not sufficient to enhance macroinvertebrate communities. 

In the restored sections investigated, the most probable reason was the 

low effect of restoration on the microhabitat. Therefore, future projects 

should aim at increasing and monitoring habitat diversity at the 

microhabitat scale, which is most relevant for macroinvertebrates.  

o Even if microhabitat diversity is improved, other factors seem to constrain 

the effect of restoration (similar to Liebig’s law of the minimum). Potential 

constraining factors are the impact of large-scale stressors and a depleted 

regional species pool. It is essential to identify the main reasons for the 

low effect of restoration on macroinvertebrates in future studies since the 

different reasons involve completely different restoration strategies. 
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Fish 

 Quantify restoration effect: 

o Restoration had a significant but weak positive effect on fish species 

richness, with a mean increase of about 1 species mainly attributed to an 

increase of rheophilic species. Moreover, there was a tendency for a higher 

total density and diversity but restoration effect on these two metrics was 

not significant.  

o Restoration had the largest effect on small rheophilic fish compared to all 

rheophilic fish or other guilds, especially on the proportion density of small 

rheophilic fish. 

 Conditions favouring restoration success: 

o Restoration extent: There was no overall effect of restoration extent on all 

fish species but restoration effect on the proportion of small rheophilic fish 

was higher in restored sections with a length of about 2 km compared to 

shorter sections. 

o Project age: Similarly, there was no overall effect of project age on all fish 

species but restoration effect on the proportion of small rheophilic fish was 

higher for rather young and old projects (< 3 and >12.5 years) and lowest 

in projects of an intermediate age. 

 Conclusions: 

o Species richness, species diversity and fish density showed only weak or 

no response to restoration, while habitat traits reacted in a consistent way 

across the restoration projects by an increase of rheophilic and a decrease 

of eurytopic fish. This is consistent with the results of other studies 

showing that restoration – as practised in the past – does not change 

species richness and diversity but rather community structure. 

o Restoration effects were more pronounced within the first years after 

restoration than later. The restoration effect increased with habitat quality 

and length of restored river sections. However, current restoration practice 

does not allow comprehensive recovery of lost species and population 

densities. The reasons for that are manifold. The length of current 

restoration measures is short (mostly < 1km) limiting the amount and 

diversity of provided habitat and re-colonization is hampered by limited 

species pools and migration barriers. Future restoration should focus on 

more dynamic, self-sustaining habitat improvements extending over 

several kilometres and should be coupled with other measures such as 

restoring river continuity and species reintroductions. 
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Macrophytes 

 Quantify restoration effect: 

o Restoration had an overall significant positive effect on richness and 

diversity of helophytes (emergent plants rooting under water or in wetted 

soils) but not on hydrophytes (emergent and submerged aquatic plants). 

 Conditions favouring restoration success: 

o Restoration extent: The effect of restoration on macrophytes was not 

significantly higher in large compared to small restoration projects. 

Moreover, restoration had no significant positive effect on richness and 

diversity, neither for the large nor for the small restoration projects. 

o Restoration measures: The effect of restoration on helophyte richness was 

significantly higher in widening projects compared to projects which 

applied less intensive measures.  

o River type: For helophytes, the effect of restoration was higher in 

mountain compared to lowland streams. 

o Restoration effect did not depend on any other catchment, river or project 

characteristic investigated (e.g. restored reach length, project age). 

 Conclusions: 

o Restoration had a significant effect on helophytes, especially in widening 

projects and mountain rivers. Since most widening projects were located in 

mountain rivers, it was difficult to deduce causal relationships. However, it 

is reasonable that widening projects, which usually create shallow low-

velocity habitats at the river banks, had a positive effect on helophytes 

which are adapted to these semi-aquatic habitats. 

 

Ground beetles 

 Quantify restoration effect: 

o Overall (pooling large and small restoration projects), restoration had a 

significant positive effect on ground beetle richness but not on diversity for 

both effect sizes used (difference between and ratio of restored vs. 

degraded sections).  

 Conditions favouring restoration success: 

o Restoration extent: Restoration had a significant positive effect on ground 

beetle richness in the large but not in the small restoration projects. 

However, this was only true if the difference between the restored and 

degraded sections was used to quantify restoration success and not for the 

ratio of restored and degraded sections. Since results did depend on the 

choice of the effect size, these results only partly confirmed that 

restoration extent favoured restoration success.  
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o Restoration measures: In contrast to restoration extent, differences 

between restored sections were much more pronounced if projects were 

grouped according to the main measure applied (widening vs. instream, 

flow restoration, remeandering). Widening had a significant positive effect 

on ground beetle richness and a smaller but still significant effect on 

diversity, whereas other measures even tended to have a negative effect.  

o River type: There was a general trend for a higher effect of restoration on 

ground beetle richness in gravel- compared to sand-bed rivers. For riparian 

specialists, strongest effects were obtained in high-gradient rivers, where 

widening as a restoration measure was applied.  

o Habitat types: The positive effect of widening was mainly due to the strong 

relationship between ground beetle richness and a specific habitat type: 

the open pioneer stage covered by sparse woody vegetation, but not to the 

mere number of habitat types.  

 Conclusions: 

o For ground beetles’ species richness, diversity, and richness of riparian 

specialists, measures creating pioneer patches are crucial, for example by 

river widening, which result in more open banks. For instream fauna like 

fish and invertebrates, riparian trees are regarded an important factor 

increasing ecological quality of the river, because it dampens temperature 

fluctuations by shading, provides food and offers habitat structure. As a 

result, the development of woody riparian vegetation is a commonly 

applied restoration measure. Our study shows that this measure could be 

counterproductive for the specialist riparian carabid fauna, which requires 

open habitat. If the purpose of restoration includes enhancing the 

conditions for floodplain biota, some open areas should remain present – in 

this case the restoration goals addressing aquatic biota and floodplain biota 

are not contradictory. This could be well combined with providing enough 

shade for the instream fauna because our results also indicate that the 

mere presence of open habitats is more important than its area. 

o Suitable restoration measures should aim on a strong lateral connection 

between the river and its floodplain to guarantee frequent inundation 

which creates and maintains pioneer patches over time. This is particularly 

important for lowland rivers as habitat turnover and the development of 

habitat diversity takes longer timespans due to less power of the river. A 

strong lateral connection will also help to promote the colonization of 

typical ground beetles for wetlands and floodplain forests. 
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Floodplain vegetation 

 Quantify restoration effect: 

o Overall (pooling large and small restoration projects), restoration had a 

significant effect on floodplain vegetation as indicated by the mean 

response ratios of several metrics/traits which were significantly different 

from zero. Restoration had a small negative effect on leaf dry matter 

content. Moreover, the share of short lived species was higher 

(significantly larger share of annual species and therophytes) in the 

restored reaches. These species benefit from disturbances, indicating that 

restoration increased the frequency of disturbances like flooding. However, 

there was no overall positive effect of restoration on species diversity.  

 Conditions favouring restoration success: 

o Restoration extent: There were no significant differences between the large 

and small restoration projects for none of the diversity and trait metrics 

investigated (e.g. richness, plant growth form). However, the following 

metrics were significantly different from zero for only either large or small 

restoration projects, indicating that restoration extent had an influence on 

the response of floodplain vegetation: 

 For the small restoration projects, we observed a decrease in the 

abundance of perennials and an increase in the abundance of 

annuals, which is often associated with highly disturbed 

environments. This was unexpected since small restoration actions 

were thought to disturb riparian and floodplain areas to a lesser 

extent compared to large restoration actions. However, the 

observed response might reflect that reconstruction of instream 

habitat structures have disturbed also the river banks and created 

open space for the establishment of annual plants. 

 For the large restoration projects we observed a decrease of the 

relative abundances of chamaephytes and an increase of 

therophytes compared to the corresponding degraded sections. 

These results indicated that large restoration increased flooding 

disturbance of riverbanks.  

o Altitude: As altitude increases, restoration is more likely to promote the 

coexistence of plants with different moisture preferences and life 

strategies. While it is difficult to assess the exact cause, possible reasons 

are (i) that restoration in high altitude sections mainly aimed at widening 

the stream channels which may have resulted in greater habitat diversity 

compared to instream and remeandering measures applied in low altitude 

sites, in addition to flashier hydrological regimes and greater stream flow 

in mountain areas leading to a faster habitat turnover, and (ii) a generally 

less intense anthropogenic disturbance in high altitude regions resulting in 

greater regional diversity and colonization of restored section by species 

with a wider range in moisture preferences and life strategies.  
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o Discharge: There is a higher probability of a positive effect of restoration 

on taxon diversity with an increasing discharge (stream size) independent 

of the restoration extent, most probably because dispersal distances of 

vegetation propagules generally increase with an increasing discharge. 

o Agricultural land use: An increased agricultural intensity in the catchment 

affected the response of trait composition of the floodplain community (i.e. 

growth form, dispersal strategies and light preferences) suggesting that 

any changes in these traits due to restoration are at risk to be masked in 

catchments with high agricultural intensity. Of particular interest is the 

observation that the presence and abundance of geophytes (perennial 

plant surviving part of their life cycle as a dormant underground structure) 

decreased with increasing agriculture, which may reflect that geophytes 

respond negatively to grazing and in particular phosphorous availability - 

factors which are both highly associated with agricultural intensity. 

However, we found no effect of agricultural land use on the effect of 

restoration on diversity metrics. We speculate that restoration effect on 

diversity is more strongly affected by larger spatial scales (e.g. bioregion) 

or historical disturbances, i.e. masked by factors operating at much larger 

spatial scales and/or over longer time periods. 

o Project age (time between implementation of the measures and 

monitoring): While positive relationships between riparian plant richness 

and time after restoration have been observed in some restored sections, 

the time scale investigated (1-20 years) may be far below what is needed 

for full community recovery. Moreover, effects on diversity may be delayed 

by time-lags in the recovery of environmental conditions that restoration 

was unable to target. 

 Conclusions: 

o Restoration had an effect on trait composition, while general effects on 

diversity were limited to the small restoration projects. The high variability 

in restoration effects could be attributed to factors related to river typology 

(discharge and altitude), catchment land use and project age. These strong 

relationships may partly explain why no general effects of restoration on 

diversity indices were detected. However, communities may also need 

considerable more time to establish, and an increase in diversity may not 

be seen within the time frame investigated here. 
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Stable isotopes 

 Quantify restoration effect: 

o Restoration increased the complexity of the macroinvertebrate food web, 

and hence trophic length (indicated by the range of δ15N, labelled as Δ15N) 

in some of the restored sections but differences between restored and 

degraded sections were not significant. In both restored and degraded 

sections, the Δ15N of the macroinvertebrate communities was almost within 

the limits of a single trophic level. 

o Restoration increased the diversity of food sources for macroinvertebrates 

as indicated by higher Δ13C in large restoration projects.  

 Conditions favouring restoration success: 

o Restoration extent: The diversity of food sources for macroinvertebrates 

was higher in large restoration projects compared to the corresponding 

degraded sections but no such differences were found for small restoration 

projects.  

 Conclusions:  

o Results indicated that the effect of restoration on food sources and food 

webs depends on restoration extent which is possible due to an increase in 

habitat diversity and in turn food sources as well as increased river-

floodplain interactions. Further analysis will a.o. focus on the effect of 

different restoration measures. In light of the results on the organism 

groups, it might be expected that especially widening projects will increase 

species richness and river-floodplain interactions, and hence influence food 

webs. 
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11.3 General discussion and conclusions 

Transferability of results 

The 20 restoration projecs investigated in this study were representing good-practice 

examples in Northern Eastern and Central Europe either targeting medium-sized lowland 

rivers or medium-sized mountain rivers (Figure 1-2), already covering many river types 

in Europe, and partly reflecting the relatively long tradition in river restoration in these 

regions, and hence, availability of good-practice examples. Without substantially 

increasing the number of restoration projects investigated, which was beyond the 

capability of a single study, including large rivers or projects from Western or Southern 

Europe would have resulted in regional differences too large to allow for grouping and a 

meaningful comparison for statistical analysis. Therefore, transferability of the results is 

mainly limited to mid-sized rivers in the regions investigated and regional differences 

have to be considered when applying the results in other river types or regions. 

 

The general effect of restoration on biota - a comparison of different response 

variables  

As hypothesized, the effect of restoration on richness and diversity differed between the 

response variables investigated. Almost all organism groups showed the expected higher 

effect on floodplain-related compared to aquatic variables. Restoration had no or only a 

small effect on species richness or diversity of macroinvertebrates and fish, while 

restoration had a clear positive effect on richness or diversity of organism groups 

inhabiting river banks or adjacent shallow shoreline habitats (ground beetles, 

macrophytes). This is consistent with the findings of several other studies which found 

that restoration has a high effect on ground beetles (Januschke et al. 2011) and 

macrophytes (Lorenz et al. 2012) and a smaller or missing effect on fish and 

macroinvertebrates (Schmutz et al. 2014, Jähnig et al. 2009, Januschke et al. 2014, 

REFORM deliverable D 4.2 Kail and Angelopoulos 2014). However, the most floodplain-

related organism group (floodplain vegetation) showed no increase in richness or 

diversity, in contrast to other studies reporting a significant higher richness in restored 

compared to degraded sections (Jähnig et al. 2009, Januschke et al. 2011). These 

contrasting results were possibly due to the limiting effect of land use, which was much 

more intense in some of the catchments investigated in this study.  

 In general, it can be expected that the effect of restoration on species number 

and diversity is high for ground beetles, macrophytes, and floodplain vegetation 

(given a low land use pressure), moderate for fish, and low for 

macroinvertebrates. 

 The effect of river restoration projects should be assessed in a holistic way, 

including semi-terrestrial and terrestrial organism groups since terrestrial 

(floodplain) and aquatic ecosystems are closely linked and cannot be considered 

separately.  

 

 

 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 169 of 240  

 

In general, the effect of restoration on community structure, traits, and functional 

indicators was more pronounced compared to its effect on the pure number of species or 

diversity mentioned above. First, for three organism groups, the significant effect of 

restoration on species richness or diversity was most pronounced for specific traits 

(ground beetle species inhabiting sparsely vegetated river, only helophytes but not 

hydrophytes, small rheophilic fish). Second, organism groups for which richness or 

diversity was not significantly increased showed effects on community structure (increase 

of therophytes and annual floodplain vegetation species, increase of food source diversity 

for invertebrates as indicated by the stable isotopes). Third, the restored and degraded 

sections were highly dissimilar, also in respect to organism groups for which species 

number and diversity did not or only slightly change (macroinvertebrates, fish, and 

floodplain vegetation besides macrophytes and ground beetles, Figure 3-1). These 

changes in community structure indicate specific functional changes caused by river 

restoration and can be used to increase our understanding how restoration measures 

affect aquatic ecosystems and investigate causal relationships. 

 Future monitoring and studies should focus more on functional aspects (e.g. 

species traits, community structure) to investigate how river restoration affects 

river hydromorphology and biota, which would offer a great opportunity to make 

fundamental advances in restoration ecology and to identify (cost)-effective 

restoration measures. 

 Restoration projects should also aim at restoring ecosystem functions and focus 

more on traits besides assessing restoration success based on the effect on 

species richness and diversity. 

 

Conditions favouring restoration success  

The factors potentially constraining or enhancing the effect of restoration were partly 

correlated, which made it difficult to infer causal relationships (e.g. most old projects 

were located in gravel-bed rivers where widening was the main restoration measure 

applied, and catchment land use was less intensive). Nevertheless, it was possible to 

identify conditions which most probably favour restoration success: 

Catchment land use: It has been widely stated that large-scale pressures like water 

quality and fine sediment loads might constrain the effect of restoration (Palmer et al. 

2010, Lorenz and Feld 2013; Sundermann et al. 2013), which in principle should affect 

aquatic organism groups like macroinvertebrates and fish more strongly compared to 

riparian and floodplain inhabiting biota or macrophytes, which even might benefit from 

slightly increased nutrient loads. However, in this study, catchment land use did only 

affect restoration effect on trait composition of floodplain vegetation. The missing effect 

of restoration on species richness and diversity of floodplain vegetation was not related 

to present agricultural land use as a large-scale pressure, and floodplain vegetation 

possibly has rather been affected by regional differences and historical disturbances 

(Harding et al. 1998), i.e. factors operating at much larger spatial and temporal scales. It 

has been widely stated that the effect of restoration on macroinvertebrates is constrained 

by large-scale pressures like a high land-use pressure in the upstream catchment (Kail 

and Hering 2009, Lorenz & Feld 2013, Marzin et al. 2013, Verdonschot et al. 2013). 

However, in this study, catchment land use had no effect and results rather indicated 
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that the low effect on invertebrates was mainly due to a low effect of restoration on the 

microhabitat conditions relevant for macroinvertebrates (see discussion on habitat 

conditions below).  

Similar non-significant linear relationships between catchment land use and richness as 

well as abundance were found in a recent meta-analysis of peer-reviewed literature on 

fish, macroinvertebrates, and macrophytes (REFORM deliverable D 4.2 by Kail and 

Angelopoulos, 2014). Only the effect of restoration on fish abundanc was negatively 

affected by agricultural land use. In contrast in the same meta-analysis, agricultural land 

use was identified as an important predictor for restoration success using other statistical 

methods which are more appropriate to detect non-linear relationships, upper limits, and 

threshold effects (Kail and Angelopoulos 2014) but require a much larger sample size 

compared to the 20 restoration projects investigated in this study.  

Species pool and dispersal: The organism groups which did benefit most from restoration 

also have relatively high dispersal abilities (ground beetles, macrophytes), indicating that 

lower dispersal abilities (e.g. macroinvertebrates) or migration barriers (e.g. affecting 

upstream migration of fish) might have limited the effect of restoration on other 

organism groups. The ecological status of upstream reaches used as a proxy for 

macroinvertebrate source populations was not related to restoration success, indicating 

that - at least for macroinvertebrates in the projects investigated - the limited species 

pool available for re-colonization was not a main factor affecting restoration success. 

Moreover, the effect of restoration on floodplain vegetation increased with river size 

(discharge), most probably because dispersal distances of vegetation propagules 

generally increase with an increasing discharge. A detailed analysis of source populations 

and dispersal modelling was beyond the scope of this study but there is an increasing 

number of publications on this topic (Stoll et al. 2013, Tonkin et al. 2014, Radinger et al. 

2014) and it clearly merits further investigation since a limited re-colonization potential 

would need a completely different restoration strategy compared to habitat 

improvements.  

Project age (time between implementation of the measures and monitoring) only had a 

positive effect on the aquatic habitat conditions but not on any of the organism groups 

investigated, possibly due to the young age of most projects investigated. Most projects 

were just implemented 1 to 16 years prior to monitoring, which was probably less than 

what is needed for full community recovery. In contrast, project age was identified as 

one of the most important variables affecting restoration success in the REFORM 

deliverable D 4.2. (Kail and Angelopoulos 2014), which is surprising since the gradient in 

this dataset was even shorter (10-90th percentile range of 1 to 8 years). These 

contrasting results stress the need to further investigate the effect of restoration over 

time in future studies to better understand the trajectories of change induced by 

restoration measures, and to identify sustainable measures which enhance biota in the 

long-term. 
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 The effect of restoration depends on different factors including present large-scale 

pressures (e.g. water quality, fine sediment input), historical disturbances, a 

limited species pool and migration barriers hindering re-colonization of the 

restored section as well as project age. The knowledge on the effect of these 

factors on restoration success is still limited due to methodological problems or 

limited data availability and clearly merits further investigation. 

 

Restoration extent: The effect of restoration did not differ significantly between the large 

and small restoration projects for none of the response variables. However, results 

indicated that there was a tendency for large restoration projects being more successful. 

For three organism groups, only large projects had a significant positive effect on some 

biological metrics which indicate a higher interaction between the river and its floodplain 

while small projects did not show such a significant effect (ground beetle richness, 

floodplain vegetation traits indicating higher disturbance by flooding, food source 

diversity for invertebrates as indicated by stable isotopes). Moreover, the share of small 

rheophilic fish was larger in longer restored sections and large projects tended to have a 

higher effect on mesohabitat diversity. Similarly, Kail and Angelopoulos (2014) did not 

find an effect of restored reach length in a meta-analysis on restoration success (see 

REFORM deliverable 4.2).  

Based on these results, one should not conclude that it is sufficient to restore short river 

sections and implement small restoration projects. The majority of the large restoration 

projects were still too small to cause significant differences compared to the smaller 

projects. For example, restored section length was less than or equalling 2 km, except 

for two restoration projects (see Annex B). This is consistent with the results of Kail and 

Angelopoulos (2014) who also concluded that the missing effect of restored section 

length on restoration success was most probably due to the short length of most restored 

sections investigated (< 2.6 km). Moreover, it is in line with the results of Schmutz et al. 

(2014), who observed a higher effect of restoration on the number of rheophilic fish 

species in long restored as compared to short restored sections but only at length greater 

than 3.8 km. 

 Restoration extent (length of restored section, restoration intensity) is not the 

main factor determining restoration effects in projects comparable to the once 

investigated. Most probably, restoration projects implemented in the past were 

simply too small to benefit from possible positive mitigating effects of restoration 

extent. 

 

Restoration measures: Widening was applied in many of the projects investigated (11 out 

of 20) and had a significantly larger effect on ground beetle richness and diversity as well 

as richness of helophytes compared to other, less intensive measures (e.g. 

remeandering, flow restoration, instream measures). The results for macrophytes 

(helophytes) were consistent with the findings of Kail and Angelopulos (2014) who 

reported that widening had a positive and much higher effect on the richness/diversity of 

macrophytes compared to fish and macroinvertebrates. Moreover, widening projects also 

tended to have a higher effect on macroinvertebrate richness as well as macro- and 

mesohabitat diversity. This is consistent with the widely endorsed assumption that 
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restoring geomorphological processes in longer reaches by e.g. removing bed and bank 

fixation and widening has a higher effect on hydromorphology and biota compared to 

other non-process based measures like gravel addition. The projects classified as 

widening usually comprised a set of restoration measures, including the removal of bed 

and bank fixation, flattening the river banks, and considerably widening the cross-section 

in some cases. Therefore, it is difficult to disentangle the effect of single measures and 

their contribution to the overall effect. Since the positive effect on ground beetles was 

mainly due to the creation of open pioneer habitats covered by sparse woody vegetation, 

even single measures like flattening river banks might already suffice but this has to be 

further investigated. 

The higher effect of widening projects do not question the use of pure instream measures 

restricted to the river bed since transferability in respect to instream measures is limited 

due to the relatively low number of projects which mainly applied such kind of measures 

(n=4). In a recent meta-analysis based on a larger number of restoration projects, 

instream measures in the wetted channel had a significant positive effect on either 

richness/diversity or abundance/biomass of fish and macroinvertebrates (Kail and 

Angelopoulos 2014). Moreover, Miller et al. (2010) reported a significant positive effect of 

typical instream measures (large wood and boulder placement) on macroinvertebrate 

richness in a meta-analysis. 

 Widening (removing bed and bank fixation, flattening river banks, and in some 

projects considerably widening the cross-section) is one of the most effective 

restoration measure, especially for ground beetles and macrophytes but instream 

measures in the wetted channel also can have a significant positive effect. 

 

Habitat conditions: The results indicated that it is crucial to ensure the restoration 

projects enhance habitat conditions at spatial scales relevant for biota. For ground 

beetles, the positive effect of widening was mainly due to the strong relationship 

between ground beetle richness and a specific habitat type: the open pioneer stage 

covered by sparse woody vegetation, but not to the mere number of habitat types. The 

effect of restoration on macroinvertebrates (quantifed by the dissimilarty of restored and 

degraded sections) was higher in restored sections where subsrates differed more 

strongly from the degraded sections (Chapter 3). Moreover, macroinvertebrate richness 

and diversity was correlated with microhabitat diversity (Chapter 5). Since restoration 

had a very low effect on substrate diversity at the microhabitat scale, this possibly was 

one of the main reasons for the low effect of restoration on macroinvertebrates. 

Surprisingly, a high effect of restoration on macro- and mesohabitat diversity was not 

associated with a high effect on microhabitats. Therefore, although a restoration project 

has enhanced macro- and mesohabitats which often is visually appealing, it still may 

have failed at increasing microhabitat diversity relevant for macroinvertebrates. 

Therefore, future projects should aim at increasing and monitoring habitat diversity at 

spatial scales which are ecologically relevant for the targeted organism groups. Even if 

microhabitat diversity is improved, other factors seem to constrain the effect of 

restoration (similar to Liebig’s law of the minimum), and hence, it is essential to identify 

the main reasons for the low effect of restoration on some organism groups since the 

different reasons involve completely different restoration strategies. 
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 It is not necessarily most important to increase the mere number of habitat types 

(e.g. habitat diversity) but to restore specific habitats which are of special 

importance.  

 It is crucial to ensure that restoration measures create habitats at spatial scales 

relevant for biota (e.g. substrate diversity at the microhabitat scale for 

invertebrates). 
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12. Annex 

12.1 Annex A: List of variables compiled in the database 

 

Table 12-1 Variables and descriptions of the database sheet “Site information” 

Parameter Description 

StationCode unique internal or national code 

StationName Station name [national name of case study reach] 

CasestudyType Type of case study: R1 = large restoration, R2 = small restoration, D1 = 
degraded reach corresponding to large restoration reach, D2 = degraded 
reach corresponding to small restoration reach [R1, R2, D1, D2] 

BeginLongitude Begin of reach upstream - Longitude [degrees W (-) or E (+), decimal], 

WGS84 
BeginLatitude Begin of reach upstream - Latitude  [degrees N, decimal], WGS84 

EndLongitude End of reach downstream - Longitude [degrees W (-) or E (+), decimal], 
WGS84 

EndLatitude End of reach downstream - Latitude  [degrees N, decimal], WGS84 

ReachLength Length of reach [km] 

ReachArea_cat Floodplain area (the river and valley bottom, that is flooded and shaped 
by dynamic processes - under natural conditions!); categorised (<1, 1-10, 
10-50, 50-100, 100-500, >500) [ha] 

ReachArea_exc Floodplain area (the river and valley bottom, that is flooded and shaped 

by dynamic processes - under natural conditions!); exact value (if known) 
[ha] 

FloodplainWidth Average Floodplain width (average of floodplain transects every 100m of 
the reach)[m] 

AltitudeBegin Altitude at begin of reach (Meters Above Sea Level) [m] 

AltitudeEnd Altitude at end of reach (Meters Above Sea Level) [m] 

Elevation Elevation, according to the WFD categories [lowland = <200 m, mid-

altitude = 200-800 m, high = >800 m] 

RiverName National river name 

StrOrder Stream order, according to Strahler 

WaterbodyID Water body code, according to River Basin Management Plan (RBMP) 

CountryID Country code (see country code list) 

BQE_Type Biological Quality Elements (BQE) of original station [1 = fish, 2 = 
invertebrates, 3 = phytobenthos, 4 = macrophytes (combinations 
possible)] 

MultipleBQE Are there more than one BQE samples for this site with the specified 
timeframe? [yes / no / nodata] 

EcoregionID Ecoregion number, according to WFD (see ecoregions list)  

GeologicalType Geological type according to WFD [calcareous / silicious / organic] 

Geol_cat Geology of catchment upstream according to WFD [calcareous / silicious / 
organic] 

CatchmentArea Catchment size [km²] 

CatchmentCat Catchment categories according to the WFD categories [very small = 
<10km² / small = 10-100km² / medium = 100-1000km² / large = 1000-
10000km² / very large = >10000km²] 

CatchmentName National name of catchment 

MainRiverRegion Name of main river region 

RestDate Year(s) of restoration [yyyy; yyyy-yyyy] 

Rest_TimeAfter_exc Time after restoration [in years] 

Rest_TimeAfter_cat Time after restoration, categorised [1 = 0-1y / 2 = 2-4y / 3 = 5-12y] 

file:///C:/Users/stud/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/995F294B.xlsx%23ListCountryCodes!A1
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Table continued 

Parameter Description 

Mon_Rest Repeated monitoring, present or absent [0 = no / 1 = yes] 

Mon_Freq Frequency of monitoring [monthly / semi-annually / annually / only once / 
other { e.g. biennial,…} / nodata] 

Mon_Time Time between implementation of project(s) and monitoring [month] 

UpstreamLakes (if the lake upstream affects a site) [yes / no / nodata] 

ProjSum Brief summary of the project location, pressure situation, objectives and 
implemented measures 

Pictures pictures (with description) before and after restoration of this site or 

pictures of degraded reach 
ReporterID_site name and organisation of the person who obtained the data 

DataSourceID_site database name, report, etc. of the obtained data 

Comment_site Any other comment 

CatchCode Code of the catchment polygon 

CLC1Perc CLC2006 class 1 in catchment polygon (% coverage) - Artificial surfaces 

CLC2Perc CLC2006 class 2 in catchment polygon (% coverage) - Agricultural areas 

CLC3Perc CLC2006 class 3 in catchment polygon (% coverage) - Forests and semi-
natural areas 

CLC4Perc CLC2006 class 4 in catchment polygon (% coverage) - Wetlands 

CLC5Perc CLC2006 class 5 in catchment polygon (% coverage) - Water bodies 

CatchArea(km2) Area of catchment polygon [km²] 
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Table 12-2 Variables and descriptions of the database sheet “Hydromorphology” 

Parameter Description 

ID_SC code of referring site (field "StationCode" of table Site information)  

ID_HM consecutive number, beginning with 1 

SampelDate [dd.mm.yyyy] 

ChanPatt Natural channel pattern [meandering, braiding, wandering, anastomosing, 
constrained] classification of channel pattern should be consistent with 
other WPs! 

ChanBankW_cat Bankfull width of river channel (m), categorised [<5, <10, <20, <50, >50] 

Slope_exc Channel slope [in %] 

Slope_cat Channel slope, categorised [<0,1% / 0,1-0,5% / 0,5-1% / 1-3% / >3%] 

FlowVel_hm Mean flow velocity [m/s] 

Discharge Mean discharge [m³/s] 

Mean_river_width Mean width of water body [m] 

Mean_river_depth Mean depth of water body [m] 

River_width_min Minimum width of water body [m] 

River_width_max Maximum width of water body [m] 

River_depth_min Minimum depth of water body [m] 

River_depth_max Maximum depth of water body  [m] 

FlowDiversity Type-specific flow diversity [present, slightly reduced, reduced, absent] 

DepthVariability  Type-specific depth variability [present, slightly reduced, reduced, absent] 

Substrate_dom_ID Dominating substrate, categorised; according to codelist 

Substrate_divers Type specific substrate diversity [present, slightly reduced, reduced, 
absent] 

BedFixation Bed-fixation [yes / no / nodata] 

InstrHabit Type specific instream habitats [present, slightly reduced, reduced, absent] 
(e.g. sediment bars, pools, rapids, cascades) 

RiverDynamics  Features indicating type specific river dynamics [present, slightly reduced, 
reduced, absent] (e.g. woody debris, undercut banks, islands,..) 

Barriers_art Artificial barriers [present / absent] (e.g.  dams, weirs)  

ChanForm_modified Channel form modified [no / intermediate / straightened] 

CrossSect_modified Cross section modified [no / intermediate / technical profile] 

Artific_Embank Artificial embankment [no / slight / intermediate / high] 

RiparianVeg_modified Riparian vegetation modified [no / slight / intermediate / high] 

FloodplHabitat Type specific floodplain habitats [present, slightly reduced, reduced, 
absent] 

BufferZone Nature-like or extensive land use in the adjacent area along the river - 
riparian buffer strip [present / absent] 

FloodplLanduse_cat Landuse of floodplain; categorised [(near-)natural / extensive agriculture / 

intensive agriculture / urban / forestry] 
HymoStatus Mean hydromorphological status [1 = very good / 2 = good / 3 = 

moderate / 4 = poor / 5 = bad] 
HymoStat_Method Name of hydromorphological survey method 

Detail_Hymo Detailed hydromorphological datasets available [yes / no; if yes] 

Detail_Hydrol Detailed hydrological datasets available [yes, no; if yes, please specify] 

HydrolModel Hydrological model available [yes / no / nodata; if yes, please specify] 

ReporterID_hyd name and organisation of the person who obtained the data 

DataSourceID_hyd database name, report, etc. of the obtained data 

 

file:///C:/Users/stud/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.MSO/995F294B.xlsx%23RANGE!B16
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Table 12-3 Variables and descriptions of the database sheet “Pressure types” 

Parameter Description 

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_PR Consecutive number, beginning with 1 

Impoundment Impoundments or stagnation  [yes / no / nodata] 

Hydropeaking Height of hydropeaking or puls releases [cm] 

WaterAbstraction Water abstraction [yes / no / nodata] 

SurfWaterAbstr Surface water abstraction [yes / no / nodata] 

GroundwAbstr Groundwater abstraction [yes / no / nodata] 

FlowRegulation Change of hydrological regime [yes / no / nodata] 

FlowVelIncrease Flow velocity increase [yes / no / nodata] 

SedimentStor Sediment storage upstream [yes / no / nodata] 

NutrPollution Nutrient pollution [yes / no / nodata]; if yes, specify: [point / diffuse] 

Morph_alter Alteration of morphology: Channelization [yes / no / nodata] 

RipVeg_alter Alteration of riparian vegetation [yes / no / nodata] 

InstrHabit_alter Alteration of instream habitats [yes / no / nodata] 

MorphDike Presence of embankments, levees or dikes [yes / no / nodata] 

Sedim_artif Artificially induced (increased) sedimentation (deposition) [yes / no / 
nodata] 

Sedim_extrac Sand and gravel extraction, dredging [yes / no / nodata] 

BarriersCatchmUp Presence of barriers in catchment upstream [yes / no / nodata] 

BarriersCatchmDown Presence of barriers in catchment downstream [yes / no / nodata] 

NumberBarrierUp Number of  barriers in catchment upstream 

NumberBarrierDown Number of  barriers in catchment downstream 

DistNextBarrUp Distance to next  barrier upstream [km] 

DistNextBarrDown Distance to next barrier downstream [km] 

WaterUse Water use [HP= Hydropower / I = Irrigation / DW = Drinking Water / SP = 

Snow Production /FP = Fishponds / CW = Cooling Water/ IW = Industrial 
Water]; if there are others, please specify; multiple answers possible 

PressCatchmUp Pressure types catchment upstream [CH = channelization / IP = 
impoundment /WA = water abstraction / HP = hydropeaking / PO = 
pollution /FA = flow alteration / SA = sediment alteration]; if there are 
others, please specify; multiple answers possible 

ReporterID_pres name and organisation of the person who obtained the data 

DataSourceID_pres database name, report, etc. of the obtained data 

Comment_pres Any other comment 
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Table 12-4 Variables and descriptions of the database sheet “Restoration measures”  

Parameter Description 

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_RM Consecutive number, beginning with 1 

CompLatShare CompLat/4 

CompAllShare CompAll/8 

CompLat Sum of M_InC; M_Rip; M_Plan; M_Flood 

CompAll Sum of M_Hydrol; M_Sed; M_Flow; M_Conect; M_InC; M_Rip; M_Plan; 
M_Flood 

M_Hydrol Sum of MH_Abstr; MH_Ret; MH_GW; MH_Stor; MH_Min; MH_Div; 

MH_Cycle; MH_Cons 
M_Sed Sum of MS_Add; MS_Input; MS_Reser; MS_Trans; MS_Trap; MS_Dredg 

M_Flow Sum of MF_EFlow; MF_HPeak; MF_FPlain; MF_APeak; MF_Imp; 
MF_MorphFlow 

M_Conect Sum of MC_Up; MC_Down; MC_Manag; MC_Remov; MC_Culv 

M_InC Part of CompLat (Sum of MIn_FixBed; MIn_FixBank; MIn_RemSed; 
MIn_AddSed; MIn_Veg; MIn_HyStruc; MIn_Shall; MIn_Wood; MIn_Bould; 
MIn_Dynamic; MIn_Riff) 

M_Rip Part of CompLat (Sum of MR_NBuff; MR_SBuff; MR_VegBuff) 

M_Plan Part of CompLat (Sum of MP_Meander; MP_Wide; MP_Shallow; 

MP_Narrow; MP_LowC; MP_Dynamic; MP_2Flod) 
M_Flood Part of CompLat (Sum of MFP_Con; MFP_Create; MFP_Lower; MFP_Back; 

MFP_Remove; MFP_other) 
MP_PointS Decrease of point source pollution [yes / no / nodata] 

MP_DiffS Decrease of diffuse nutrient or pollution input (other than buffer strips!) 
[yes / no / nodata] 

MH_Abstr Reduction of surface water abstraction without return [yes / no / nodata] 

MH_Ret Improvement of water retention (e.g. on floodplain, urban areas, overlaps 
with MFlow_APeak) [yes / no / nodata] 

MH_GW Reduction of groundwater abstraction [yes / no / nodata] 

MH_Stor Improvement/creation of water storage (e.g. polders) [yes / no / nodata] 

MH_Min Increase of minimum flow (to generally increase discharge in a reach or to 
improve flow dynamics) [yes / no / nodata] 

MH_Div Improving water quantity by water diversion and transfer [yes / no / 
nodata] 

MH_Cycle Recycling of used water (off-site measure to reduce water consumption) 
[yes / no / nodata] 

MH_Cons Reduction of water consumption (other measures than recycling used 
water) [yes / no / nodata] 

MS_Add Adding/feeding of sediment (e.g. downstream from dam) [yes / no / 
nodata] 

MS_Input Reduction of undesired sediment input (e.g. from agricultural areas or from 
bank erosion other than riparian buffer strips!) [yes / no / nodata] 

MS_Reser Prevention of sediment accumulation in reservoirs [yes / no / nodata] 

MS_Trans Improvement of continuity of sediment transport (e.g. manage dams for 
sediment flow) [yes / no / nodata] 

MS_Trap Trapping of sediments (e.g. building sediment traps to reduce washload) 

[yes / no / nodata] 
MS_Dredg Reduction of impact of dredging [yes / no / nodata] 

MF_EFlow Establishment of environmental flows / naturalise flow regimes (does focus 
on discharge variability compared to water quantity of MH_Min) [yes / no / 
nodata] 

MF_HPeak Modification of hydropeaking [yes / no / nodata] 

MF_FPlain Increase of flood frequency and duration in riparian zones or floodplains 
[yes / no / nodata] 
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Table continued 

Parameter Description 

MF_APeak Reduction of anthropogenic flow peaks [yes / no / nodata] 

MF_Imp Shortening the length of impounded reaches [yes / no / nodata] 

MF_MorphFlow Favouring morphogenic flows (can also be considered a measure to 
improve planform or in-channel habitat conditions) [yes / no / nodata] 

MC_Up Installing fish pass, bypass, side channel for upstream migration [yes / no 
/ nodata] 

MC_Down Installing facilities for downstream migration (including fish friendly 

turbines) [yes / no / nodata] 
MC_Manag Management sluice, weir, and turbine operation for fish migration [yes / no 

/ nodata] 
MC_Remov Removal of barrier (e.g. dam or weir) [yes / no / nodata] 

MC_Culv Modification or removal of culverts, syphons, piped streams [yes / no / 
nodata] 

MIn_FixBed Removal of bed fixation [yes / no / nodata] 

MIn_FixBank Removal of bank fixation [yes / no / nodata] 

MIn_RemSed Removal of sediment (e.g. mud from groin fields) [yes / no / nodata] 

MIn_AddSed Adding of sediment (e.g. gravel, overlaps with MS_Add) [yes / no / 
nodata] 

MIn_Veg Management of aquatic vegetation (e.g. mowing) [yes / no / nodata] 

MIn_HyStruc Removal or modification of in-channel hydraulic structures (e.g. groins, 
bridges) [yes / no / nodata] 

MIn_Shall Creation of shallows near the bank [yes / no / nodata] 

MIn_Wood Recruitment or placement of large wood [yes / no / nodata] 

MIn_Bould Placement of boulders [yes / no / nodata] 

MIn_Dynamic Initiation of natural channel dynamics to promote natural regeneration [yes 
/ no / nodata] 

MIn_Riff Placement of artificial gravel bar or riffle [yes / no / nodata] 

MR_NBuff Development of buffer strips to reduce nutrient input [yes / no / nodata] 

MR_SBuff Development of buffer strips to reduce fine sediment input [yes / no / 
nodata] 

MR_VegBuff Development of natural vegetation on buffer strips (other reasons than 

nutrient or sediment input, e.g. shading, organic matter input) [yes / no / 
nodata] 

MP_Meander Remeandering of water course (actively changing planform) [yes / no / 
nodata] 

MP_Wide Widening or re-braiding of water course (actively changing planform) [yes 
/ no / nodata] 

MP_Shallow Creation of shallow water course (actively increasing level of channel-bed) 
[yes / no / nodata] 

MP_Narrow Creation of narrow over-widened water course (actively changing width) 
[yes / no / nodata] 

MP_LowC Creation of low-flow channels in over-sized channels [yes / no / nodata] 

MP_Dynamic Allowing/initiation of lateral channel migration (e.g. by removing bank 
fixation and adding large wood) [yes / no / nodata] 

MP_2Flod Creation of secondary floodplain on present low level of channel bed 
(floodplain compensation) [yes / no / nodata] 

MFP_Con Reconnection of existing backwaters, oxbow-lakes, wetlands [yes / no / 

nodata] 
MFP_Create Creation of semi-natural / artificial backwaters, oxbow-lakes, wetlands [yes 

/ no / nodata] 
MFP_Lower Lowering embankments, levees or dikes to enlarge inundation and flooding 

[yes / no / nodata] 
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Table continued 

Parameter Description 

MFP_Back Back-removal of embankments, levees or dikes to enlarge the active 
floodplain area [yes / no / nodata] 

MFP_Remove Removal of embankments, levees or dikes or other engineering structures 

that impede lateral connectivity [yes / no / nodata] 

MFP_other Other measures concerning Floodplain and Vegetation [yes / no / nodata] 

MFP_other_name If you anwered the field "MFP_other" with yes, please specify this measure 

here 
RestLimits Constraints or limiting factors which might have impeded restoration 

effects (e.g. multiple stressors, key habitats still missing) [yes / no / 
nodata] 

RestCosts_plann Planning and project design costs before project implementation [EUR] 

RestCosts_dike Construction costs for dike relocation or extension, if relevant [EUR] 

RestCosts_transc Transaction costs such as administrative and legislative costs [EUR] 

RestCosts_acqu Land acquisition costs, if relevant [EUR] 

RestCosts_oth Other construction and investment costs [EUR] 

RestCosts_maint Annual maintenance costs after project implementation [EUR] 

RestCosts_monit Annual monitoring costs after project implementation [EUR] 

RestCosts_total Total consts of restoration [EUR] 

ReporterID_res name and organisation of the person who obtained the data 

DataSourceID_res database name, report, etc. of the obtained data 

Comment_res Any other comment 
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Table 12-5 Variables and descriptions of the database sheet “Physico-chemical data” 

Parameter Description 

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_PC Enter a consecutive number, beginning with 1 

SampleMean Does this data set contain means of more than one sample [yes / no / 
nodata] 

SampleDateStart If you answered the field "SampleMean" with yes, enter the date of 
your first sample here; 
if you answered the field "SampleMean" with no, enter the date of 

your individual sample here [dd.mm.yyyy; hh:mm] 
SampleDateEnd If you answered the field "SampleMean" with yes, enter the date of 

your last sample here; 
if you answered the field "SampleMean" with no, leave this field empty 
[dd.mm.yyyy; hh:mm] 

pH PH 0-14; value at sampling time 

WaterTemp Water temperature, value at sampling time [°C] 

Conductivity Electrical conductivity, value at sampling time [microS/cm]; 

Oxygen Oxygen content, value at sampling time [mg/l] 

OxygenSaturation Oxygen saturation [%], if applicable 

BOD5 Biological oxygen demand [mg/l] 

Nitrite Nitrite [mg/l] (NOT Nitrit-N!) 

Nitrate Nitrate [mg/l] 

Ammonia Ammonia [mg/l] 

Chloride Chloride [mg/l] 

OrthoPhosphate Ortho-phosphate [microg/l] (NOT PO4-P!) 

TotalPhosphate Total-phosphate [microg/l] 

Alkalinity Alkalinity [mval/l], if applicable 

ReporterID_phych name and organisation of the person who obtained the data 

DataSourceID_phych database name, report, etc. of the obtained data 

Comment_phych Any other comment 
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Table 12-6 Variables and descriptions of the database sheets “Fish” 

Parameter Description 

FishSite  

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_site_fish Consecutive number, beginning with 1 

Site_altitude_fish Altitude [m] 

Site_name_fish Local or internal name of site 

Site_SectBegLong_fish Begin of sample section upstream - Longitude [degrees W (-) or E 
(+), decimal], WGS84 

Site_SectBegLati_fish Begin of sample section upstream - Latitude [degrees N, decimal], 

WGS84 
Site_SectEndLong_fish End of sample section downstream - Longitude [degrees W (-) or E 

(+), decimal], WGS84 
Site_SectEndLati_fish End of sample section downstream - Latitude [degrees N, decimal], 

WGS84 

FishSample  

ID_site_fish Number of referring fish site (field "ID_site_fish" of table FishSite)  

ID_sample_fish Consecutive number, beginning with 1 

FishSampleDate Date of sample [dd.mm.yyyy] 

SamplingMethod e.g. electrofishing, demersal line, beach seine, gill net 

BoatWade [boat / wading] 

Anode [fixed / handheld] 

AnodeNo Number of handheld anodes 

GenPower Power of generator [kW] 

Voltage Voltage, e.g. 300 or 600 [V]  

Amperage Amperage during sampling [A] 

Barrier Barrier at upstream end of sample [yes / no / nodata] 

SampStrat_el Sampling strategy (if electrofishing) [partial habitat / partial strip / 

serial removal] 

SampStrat_el_No Sampling strategy (if electrofishing) [number of runs] 

SamplingDuration Sampling duration / exposure time [hh:mm] 

SampleLength Length of sample [m] 

SampleWidth Width of sample [m] 

SampleRiverWidth River width at sampling site [m] 

SampleRiverDepth_av Average depth at sampling site [cm] 

SampleRiverDepth_max Maximum depth at sampling site [cm] 

FlowVel_fish Flow velocity at sampling site [m/s] 

SampleType [midstream / riparian zone / whole width] 

SampleHabitat [main channel / side channel connected / backwater / oxbow] 

SampleHabitatStruct [rock / boulders / gravel / sand / mud / litter / woody debris / reeds / 
submersal macrophytes / riparian vegetation]; multiple answers are 

permitted 
CaptureEfficiency Capture efficiency; estimated for each species and different age/size 

classes: 100% is the total of visually detected fish [%] 

ReporterID_fish name and organisation of the person who obtained the data 

DataSourceID_fish database name, report, etc. of the obtained  

Comment_fish Any other comment 
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Table continued 

Parameter Description 

FishCatch  

ID_sample_fish Number of referring sample (field "ID_sample_fish" of table 
FishSample) 

ID_catch_fish Consecutive number, beginning with 1 

FishSpeciesID ID of scientific name of species (see taxa list) 

FishLength Length of fish [mm] 

FishWeight Weight of fish [g] 

Sex [m/f] 

FishAbundJuv Abundance data of whole community (juveniles),  area-related 

[absolute no. of individuals in sample] 
FishAbundAdu Abundance data of whole community (adults), area-related [absolute 

no. of individuals in sample] 

AddInfo   

 

 

Table 12-7 Variables and descriptions of the database sheets “Invertebrates” 

Parameter Description 

InvSite  

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_site_inv Consecutive number, beginning with 1 

Site_Long_inv Longitude at midpoint of sample reach  [degrees W (-) or E (+), 
decimal], WGS84 

Site_Lati_inv Latitude at midpoint of sample reach [degrees N, decimal], WGS84 

Site_altitude_inv Altitude [m] 

Site_name_inv Local or internal name of site 

InvSample  

ID_site_inv Number of referring site (field "ID_site_inv" of table InvSite) 

ID_sample_inv Consecutive number, beginning with 1 

InvSampleDate Date of sample [dd.mm.yyyy] 

InvSampleMeth Sampling methode 

Sample_area_inv Sampling area [m²] 

ReporterID_inv name and organisation of the person who obtained the data 
DataSourceID_inv database name, report, etc. of the obtained data  

Comment_inv Any other comment 

InvCatch  

ID_sample_inv Number of referring sample (field "ID_sample_inv" of table 
InvSample) 

ID_catch_inv Consecutive number, beginning with 1 

Inv_spec_ID Species ID of invertebrates (according to codelist)  

InvSpecAbund Abundance of species 
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Table 12-8 Variables and descriptions of the database sheets “Macrophytes” 

Parameter Description 

MacrophSite  

ID_SC Code of referring site (field "StationCode" of table Site information) 

ID_site_mph Consecutive number, beginning with 1 

MPhSiteLong Longitude of sample site [degrees W (-) or E (+), decimal], WGS84; 
midpoint of sample reach 

MPhSiteLati Latitude of sample site [degrees N, decimal], WGS84; midpoint of 

sample reach 
MPhSite_name Local or internal name of site 

MacrophSample  

ID_site_mph Number of referring sample (field "ID_site_mph" of table MacrophSite)  

ID_sample_mph Consecutive number, beginning with 1 

MPhSampleDate Date of sample [dd.mm.yyyy] 

MPhSampleMeth Sampling methode 

ReporterID_mph Name and organisation of the person who obtained the data 
DataSourceID_mph database name, report, etc. of the obtained data 
Comment_mph Any other comment 

MacrophCatch  

ID_sample_mph Number of referring sample (field "ID_sample_mph" of table 

MacrophSample) 

ID_catch_mph Consecutive number, beginning with 1 

MPhTaxonID Macrophytes Taxon ID (according to codelist) 

MPhEmSub [emergent / submerged] 

MPhGrowthForm ID of growth form, according to Den Hartog & Van der Velde 1988 and 
Wiegleb 1991 (see codelist)  

MPhAbundance Abundance of Species; 5-point scale, according to Kohler (1978) [1 = 
very rare, 2 = rare, 3 = common, 4 = frequent, 5 = abundant, 
predominant] 
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Table 12-9 Variables and descriptions of the database sheets “Riparian beetles” 

Parameter Description 

BeetSite  

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_site_beet Consecutive number, beginning with 1 

BeetSiteLong Longitude of sample site [degrees W (-) or E (+), decimal], WGS84; 
midpoint of sample reach 

BeetSiteLati Latitude of sample site [degrees N, decimal], WGS84; midpoint of 

sample reach 
BeetSite_name Local or internal name of site 

BeetSample  

ID_site_beet Number of referring sample (field "ID_site_beet" of table BeetSite)  

ID_sample_beet Consecutive number, beginning with 1 

BeetSampleDate Date of sample; for pitfall traps date of installing traps  [dd.mm.yyyy] 

BeetMH_RipFor Coverage of mesohabitat 'Riparian forest' [%]: > 25% coverage of 
woody riparian vegetation; trees cover the area 

BeetMH_Past Coverage of mesohabitat 'Pasture' [%]: Gras land (no tree cover) 

BeetMH_Ohv Coverage of mesohabitat 'Other herbaceous vegetation' [%]: Riparian 
herbaceous vegetation (no tree cover) 

BeetMH_VegS Coverage of mesohabitat 'Vegetated swamp' [%]: very moist (muddy) 
vegetated patches 

BeetMH_Ogbr Coverage of mesohabitat 'Open gravel bank/bar' [%]: < 25% 
vegetation coverage 

BeetMH_Osbr Coverage of mesohabitat 'Open sand bank/bar' [%]: < 25% 
vegetation coverage 

BeetMH_Ombr Coverage of mesohabitat 'Open mud bank/bar' [%]: < 25% vegetation 
coverage 

BeetMH_Sue Coverage of mesohabitat 'Steep unvegetated embankment' [%]: < 

25% vegetation coverage 
BeetMH_othName If mesohabitat is present, that does not fit to the classification of 

mesohabitats above, please specify 

BeetMH_Oth Coverage of other mesohabitat, if it doesn't fit to defined mesohabitats 
[%] 

ReporterID_beet name and organisation of the person who obtained the data 

DataSourceID_beet database name, report, etc. of the obtained data 

Comment_beet Any other comment 

BeetCatch  

ID_sample_beet Number of referring sample (field "ID_sample_beet" of table 

BeetSample) 

ID_catch_beet Consecutive number, beginning with 1 

BeetSampleMeth Sampling methode [hand collection / pitfall trap] 

BeetSampleNo Enter consecutively from 1 within a sample; each subsample (each 
trap and handcollection get a unique number) 

BeetMesohab Name of mesohabitat that was sampled 

BeetTaxonID Beetles Taxon ID (according to codelist) 

BeetAbundance Abundance of species absolute 
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Table 12-10 Variables and descriptions of the database sheets “Floodplain Vegetation” 

Parameter Description 

VegSite  

ID_SC Code of referring site (field "StationCode" of table Site information)  

ID_site_veg Consecutive number, beginning with 1 

VegSiteLong Longitude of sample site [degrees W (-) or E (+), decimal], WGS84; 
midpoint of sample reach 

VegSiteLati Latitude of sample site [degrees N, decimal], WGS84; midpoint of 

sample reach 
VegSite_name Local or internal name of site 

VegSample  

ID_site_veg Number of referring sample (field "ID_site_veg" of table VegSite)  

ID_sample_veg Consecutive number, beginning with 1 

VegSampleDate Date of sample [dd.mm.yyyy] 

ReporterID_veg name and organisation of the person who obtained the data 

DataSourceID_veg database name, report, etc. of the obtained data  

Comment_veg Any other comment 

VegTransUnit  

ID_sample_veg Number of referring sample (field "ID_sample_veg" of table 
VegSample) 

ID_transect_veg Transect number (1, 2 or 3) at which the (length of) vegetation 
order/unit was mapped 

ID_VegCode Each order or unit can appear more than once per transect or site, so 
each one is counted separately 

ID_vegorder ID of vegetation order of community (according to codelist)  

ID_vegunit ID of vegetation unit of community (according to codelist)  

Veg_othName If there is a vegetation order or unit that you don't find in the list, 
please specify here 

VegUnitLength Length of vegetation orders/units at transect number x for all 
vegetation orders/units present in a sample site [m] 

VegTaxa  

ID_sample_veg Number of referring sample (field "ID_sample_veg" of table 
VegSample) 

ID_transect_veg Number of referring transect (field "ID_transect_veg" of table 
VegTransUnit) 

ID_VegCode Number of referring field "ID_VegCode" of table VegTransUnit  

VegTaxonID Taxon ID of plants (according to codelist) 

VegTaxonCoverage Coverage of the taxon within a vegetation unit at an area of 2x3 

meters [abundance classes: 1%, 5%, 10%, 15%, 20% and continuing 
in 10%-steps up to 100%];  
only for 3 mapped areas per vegetation unit within a sample site 
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Table 12-11 Variables and descriptions of the database sheet “BQE Status” 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 
name_casestudy type -> eg.: FI_Kuiv_R1, AT_Drau_D1, etc.) 

EQC_all_site Ecological quality class -   at case study site [1 = high, 2 = good, 3 = 
moderate, 4 = poor, 5 = bad, 0 = nodata] - if the site includes more 
than one waterbody - calculate mean value weighted by length 

EQC_all_0 to 1 km_up Ecological quality class -  from upstream end of the site  to 1 km 
upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = 

nodata] - if the buffer includes more than one waterbody - calculate 
mean value weighted by length 

EQC_all_1 to 5 km_up Ecological quality class - from 1  to 5 km upstream [1 = high, 2 = 
good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the buffer 
includes more than one waterbody - calculate mean value weighted by 
length 

EQC_all_5 to 30 km_up Ecological quality class - from 5  to 30 km upstream [1 = high, 2 = 

good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the buffer 
includes more than one waterbody -  calculate mean value weighted 
by length 

BQC_Benin_site Biological quality class -  benthic invertebrates at case study site [1 = 
high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] - if the 
site includes more than one waterbody -  calculate mean value 

weighted by length 
BQC_Benin_0 to 1 km_up Biological quality class -  benthic invertebrates -  from upstream end 

of the site  to 1 km upstream [1 = high, 2 = good, 3 = moderate, 4 = 
poor, 5 = bad, 0 = nodata] - if the buffer includes more than one 
waterbody - calculate mean value weighted by length 

BQC_Benin_1 to 5 km_up Biological quality class -  benthic invertebrates -  from 1  to 5 km 
upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = 

nodata] if the buffer includes more than one waterbody -  calculate 
mean value weighted by length 

BQC_Benin_5 to 30 
km_up 

Biological quality class - benthic invertebrates -  from 5  to 30 km 
upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = 
nodata] if the buffer includes more than one waterbody -  calculate 

mean value weighted by length 

BQC_Macphy_site Biological quality class -  macrophytes at case study site [1 = high, 2 
= good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] - if the site 
includes more than one waterbody - calculate   mean value weighted 
by length 

BQC_Macphy_0 to 1 
km_up 

Biological quality class -   macrophytes -  from upstream end of the 
site  to 1 km upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 
5 = bad, 0 = nodata] - if the buffer includes more than one waterbody 

- calculate mean value weighted by length 
BQC_Macphy_1 to 5 
km_up 

Biological quality class -   macrophytes -  from 1  to 5 km upstream [1 
= high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if 
the buffer includes more than one waterbody -  calculate mean value 
weighted by length 

BQC_Macphy_5 to 30 
km_up 

Biological quality class -  macrophytes -  from 5  to 30 km upstream 
[1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if 

the buffer includes more than one waterbody -  calculate mean value 
weighted by length 

BQC_Phyben_site Biological quality class -  Phytobenthos at case study site [1 = high, 2 
= good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] - if the site 
includes more than one waterbody - calculate mean value weighted by 
length 

BQC_Phyben_0 to 1 
km_up 

Biological quality class -   Phytobenthos -  from upstream end of the 
site  to 1 km upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 
5 = bad, 0 = nodata] - if the buffer includes more than one waterbody 
- calculate mean value weighted by length  
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Table continued 

Parameter Description 

 

BQC_Phyben_1 to 5 
km_up 

Biological quality class -   Phytobenthos -  from 1  to 5 km upstream 
[1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if 

the buffer includes more than one waterbody -  calculate mean value 
weighted by length 

BQC_Phyben_5 to 30 
km_up 

Biological quality class -  Phytobenthos -  from 5  to 30 km upstream 
[1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if 
the buffer includes more than one waterbody - calculate mean value 
weighted by length 

BQC_Diatoms_site Biological quality class -  Diatoms at case study site [1 = high, 2 = 

good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] - if the site 
includes more than one waterbody - calculate mean value weighted by 
length 

BQC_Diatoms_0 to 1 

km_up 

Biological quality class -   Diatoms -  from upstream end of the site  to 

1 km upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = 
bad, 0 = nodata] - if the buffer includes more than one waterbody - 

calculate mean value weighted by length 
BQC_Diatoms_1 to 5 
km_up 

Biological quality class -   Diatoms -  from 1  to 5 km upstream [1 = 
high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the 
buffer includes more than one waterbody - calculate mean value 
weighted by length 

BQC_Diatoms_5 to 30 
km_up 

Biological quality class -  Diatoms -  from 5  to 30 km upstream [1 = 
high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the 

buffer includes more than one waterbody - calculate mean value 
weighted by length 

BQC_Fish_site Biological quality class -  Fish at case study site [1 = high, 2 = good, 3 
= moderate, 4 = poor, 5 = bad, 0 = nodata] - if the site includes 
more than one waterbody - calculate mean value weighted by length 

BQC_Fish_0 to 1 km_up Biological quality class -   Fish -  from upstream end of the site  to 1 
km upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 

0 = nodata] - if the buffer includes more than one waterbody - 

calculate mean value weighted by length 
BQC_Fish_1 to 5 km_up Biological quality class -   Fish -  from 1  to 5 km upstream [1 = high, 

2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the buffer 
includes more than one waterbody - calculate mean value weighted by 
length 

BQC_Fish_5 to 30 km_up Biological quality class -  Fish -  from 5  to 30 km upstream [1 = high, 
2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the buffer 
includes more than one waterbody - calculate mean value weighted by 
length 

BQC_Fish_0 to 1 
km_down 

Biological quality class -   Fish -  from downstream end of the site  to 
1 km downstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = 
bad, 0 = nodata] - if the buffer includes more than one waterbody - 

calculate mean value weighted by length 
BQC_Fish_1 to 5 
km_down 

Biological quality class -   Fish -  from 1  to 5 km downstream [1 = 
high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the 
buffer includes more than one waterbody - calculate mean value 
weighted by length 

BQC_Fish_5 to 30 

km_down 

Biological quality class -  Fish -  from 5  to 30 km downstream [1 = 

high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if the 

buffer includes more than one waterbody - calculate mean value 
weighted by length 

BQC_Phypla_site Biological quality class -  Phytoplankton at case study site [1 = high, 2 
= good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] - if the site 
includes more than one waterbody - calculate mean value weighted by 
length 
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Table continued 

Parameter Description 

BQC_Phypla_0 to 1 
km_up 

Biological quality class -   Phytoplankton -  from upstream end of the 
site  to 1 km upstream [1 = high, 2 = good, 3 = moderate, 4 = poor, 
5 = bad, 0 = nodata] - if the buffer includes more than one waterbody 
- calculate mean value weighted by length 

BQC_Phypla_1 to 5 
km_up 

Biological quality class -   Phytoplankton -  from 1  to 5 km upstream 
[1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if 
the buffer includes more than one waterbody - calculate mean value 

weighted by length 
BQC_Phypla_5 to 30 
km_up 

Biological quality class -  Phytoplankton -  from 5  to 30 km upstream 
[1 = high, 2 = good, 3 = moderate, 4 = poor, 5 = bad, 0 = nodata] if 
the buffer includes more than one waterbody - calculate mean value 
weighted by length 

ReporterID_BQE name and organisation of the person who obtained the data;  

DataSourceID_BQE database name, report, etc. of the obtained data  

Comment_BQE Any other comment 

 

 

Table 12-12 Variables and descriptions of the database sheet “Colonization Sources” 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 
name_casestudy type -> eg.: FI_Kuiv_R1, AT_Drau_D1, etc.) 

NHES_Benin_0 to 1 
km_up 

Number of water bodys with high or good ecological status - BQE 
benthic invertebrates - from upstream end of the site  to 1 km 
upstream  

NHES_Benin_1 to 5 

km_up 

Number of water bodys with high or good ecological status - BQE 

benthic invertebrates - from 1 to 5 km upstream  
NHES_Benin_5 to 30 
km_up 

Number of water bodys with high or good ecological status - BQE 
benthic invertebrates - from 5 to 30 km upstream  

TLHES_Benin_0 to 1 

km_up 

Total length of water bodies with high or good ecological status  - BQE 

benthic invertebrates-  from upstream end of the site  to 1 km 
upstream [km] 

TLHES_Benin_1 to 5 

km_up 

Total length of water bodies with high or good ecological status  - BQE 

benthic invertebrates-  from 1 to 5 km upstream [km] 
TLHES_Benin_5 to 30 
km_up 

Total length of water bodies with high or good ecological status  - BQE 
benthic invertebrates-  from 5 to 30 km upstream [km] 

DataSource__CCS_Benin database name, report, etc. of the obtained data 

NHES_Macphy_0 to 1 
km_up 

Number of water bodys with high or good ecological status - BQE 
macrophytes - from upstream end of the site  to 1 km upstream  

NHES_Macphy_1 to 5 

km_up 

Number of water bodys with high or good ecological status - BQE 

macrophytes - from 1 to 5 km upstream  
NHES_Macphy_5 to 30 
km_up 

Number of water bodys with high or good ecological status - BQE 
macrophytes - from 5 to 30 km upstream  

TLHES_Macphy_0 to 1 
km_up 

Total length of water bodies with high or good ecological status  - BQE 
macrophytes - from upstream end of the site  to 1 km upstream [km] 

TLHES_Macphy_1 to 5 
km_up 

Total length of water bodies with high or good ecological status  - BQE 
macrophytes - from 1 to 5 km upstream [km] 

TLHES_Macphy_5 to 30 
km_up 

Total length of water bodies with high or good ecological status  - BQE 
macrophytes-  from 5 to 30 km upstream [km] 

DataSource__CCS_Macph
y 

database name, report, etc. of the obtained data  

NHES_Phyben_0 to 1 
km_up 

Number of water bodys with high or good ecological status - BQE 
phytobenthos - from upstream end of the site  to 1 km upstream  

NHES_Phyben_1 to 5 
km_up 

Number of water bodys with high or good ecological status - BQE 
phytobenthos - from 1 to 5 km upstream  
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Table continued 

Parameter Description 

NHES_Phyben_5 to 30 km Number of water bodys with high or good ecological status - BQE 
phytobenthos - from 5 to 30 km upstream  

TLHES_Phyben_0 to 1 
km_up 

Total length of water bodies with high or good ecological status  - 
BQE phytobenthos - from upstream end of the site  to 1 km 
upstream [km] 

TLHES_Phyben_1 to 5 
km_up 

Total length of water bodies with high or good ecological status  - 
BQE phytobenthos - from 1 to 5 km upstream [km] 

TLHES_Phyben_5 to 30 km Total length of water bodies with high or good ecological status  - 
BQE phytobenthos - from 5 to 30 km upstream [km] 

DataSource__CCS_Phyben database name, report, etc. of the obtained data  

NHES_Diatoms_0 to 1 
km_up 

Number of water bodys with high or good ecological status - BQE 
diatoms - from upstream end of the site  to 1 km upstream  

NHES_Diatoms_1 to 5 
km_up 

Number of water bodys with high or good ecological status - BQE 
diatoms - from 1 to 5 km upstream  

NHES_Diatoms_5 to 30 
km_up 

Number of water bodys with high or good ecological status - BQE 
diatoms - from 5 to 30 km upstream  

TLHES_Diatoms_0 to 1 
km_up 

Total length of water bodies with high or good ecological status  - 
BQE diatoms - from upstream end of the site  to 1 km upstream 
[km] 

TLHES_Diatoms_1 to 5 
km_up 

Total length of water bodies with high or good ecological status  - 
BQE diatoms - from 1 to 5 km upstream [km] 

TLHES_Diatoms_5 to 30 
km_up 

Total length of water bodies with high or good ecological status  - 
BQE diatoms - from 5 to 30 km upstream [km] 

DataSource_CCS_Diatoms database name, report, etc. of the obtained data 

NHES_Fish_0 to 1 km_up Number of water bodys with high or good ecological status - BQE 

fish - from upstream end of the site  to 1 km upstream  
NHES_Fish_1 to 5 km_up Number of water bodys with high or good ecological status - BQE 

fish - from 1 to 5 km upstream  
NHES_Fish_5 to 30 km_up Number of water bodys with high or good ecological status - BQE 

fish - from 5 to 30 km upstream  
TLHES_Fish_0 to 1 km_up Total length of water bodies with high or good ecological status  - 

BQE fish - from upstream end of the site  to 1 km upstream [km] 

TLHES_Fish_1 to 5 km_up Total length of water bodies with high or good ecological status  - 
BQE fish - from 1 to 5 km upstream [km] 

TLHES_Fish_5 to 30 km_up Total length of water bodies with high or good ecological status  - 
BQE fish - from 5 to 30 km upstream [km] 

DataSource__CCS_FishUp database name, report, etc. of the obtained data  

NHES_Fish_0 to 1 km_down Number of water bodys with high or good ecological status - BQE 
fish - from downstream end of the site  to 1 km downstream  

NHES_Fish_1 to 5 km_down Number of water bodys with high or good ecological status - BQE 

fish - from 1 to 5 km downstream  
NHES_Fish_5 to 30 
km_down 

Number of water bodys with high or good ecological status - BQE 
fish - from 5 to 30 km downstream  

TLHES_Fish_0 to 1 
km_down 

Total length of water bodies with high or good ecological status  - 
BQE fish - from upstream end of the site  to 1 km downstream  
[km] 

TLHES_Fish_1 to 5 
km_down 

Total length of water bodies with high or good ecological status  - 
BQE fish - from 1 to 5 km downstream  [km] 

TLHES_Fish_5 to 30 
km_down 

Total length of water bodies with high or good ecological status  - 
BQE fish - from 5 to 30 km downstream  [km] 

DataSource__CCS_FishDown database name, report, etc. of the obtained data 

NHES_Phypla_0 to 1 km_up Number of water bodys with high or good ecological status - BQE 
phytoplankton - from upstream end of the site  to 1 km upstream  

NHES_Phypla_1 to 5 km_up Number of water bodys with high or good ecological status - BQE 

phytoplankton - from 1 to 5 km upstream  
NHES_Phypla_5 to 30 
km_up 

Number of water bodys with high or good ecological status - BQE 
phytoplankton - from 5 to 30 km upstream  
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Table continued 

Parameter Description 

TLHES_Phypla_0 to 1 km_up Total length of water bodies with high or good ecological status  - 
BQE phytoplankton - from upstream end of the site  to 1 km 
upstream [km] 

TLHES_Phypla_1 to 5 km_up Total length of water bodies with high or good ecological status  - 
BQE phytoplankton - from 1 to 5 km upstream [km] 

TLHES_Phypla_5 to 30 
km_up 

Total length of water bodies with high or good ecological status  - 
BQE phytoplankton - from 5 to 30 km upstream [km] 

DataSource__CCS_Phypla database name, report, etc. of the obtained  

ReporterID_CCS name and organisation of the person who obtained the data 

Comment_CCS Any other comment 

 

 

Table 12-13 Variables and descriptions of the database sheet “Hydromorphology” of the 

catchment 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 
name_casestudy type -> eg. FI_Kuiv_R1, AT_Drau_D1, etc.) 

Name_next_gauge Name of nearest gauging station to case study site 

gauge_up_down Location of nearest gauging station up- or downstream to case study 
site [up/down] 

Dist_Gauge Distance from case study site to nearest gauging station  [km]  

Discharge_NQ low water level discharge [m³/s]  [-999 = nodata] 

Discharge_MNQ mean low water level discharge [m³/s]  [-999 = nodata] 

Discharge_MQ mean level discharge [m³/s]  [-999 = nodata] 

Discharge_MHQ mean high water level discharge [m³/s]  [-999 = nodata] 

Discharge_HQ high water level discharge [m³/s]  [-999 = nodata] 

DataSourceID_disc 
database name, report, etc. of the obtained data  

Discharge_data_year discharge data recorded in year or mean values from time series from 
-to  [yyyy/yyyy-yyyy] 

HymoStatus Mean hydromorphological status for case study site [1 = very good, 2 
= good, 3 = moderate, 4 = poor, 5 = bad,0 = nodata]   if the site 
includes more than one waterbody - calculate mean value weighted by 
length [-999 = nodata] 

ReporterID_hyd name and organisation of the person who obtained the data 
DataSourceID_hyd database name, report, etc. of the obtained data  

Comment_hyd 
Any other comment 
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Table 12-14 Variables and descriptions of the database sheet “Hydromorphological 

pressures” 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 
name_casestudy type -> eg.: FI_Kuiv_R1, AT_Drau_D1, etc.) 

Impoundment_YN Impoundments  in catchment upstream [1 = yes, 2 = no, 0 = nodata] 

Impoundment_perc Percentage of impounded water courses in catchment upstream [%] - 
Total Length of water courses in catchment upstream = 100% [-999 = 

nodata] 
Hydropeaking_YN Waterbodies affected by Hydropeaking in catchment upstream [1 = 

yes, 2 = no, 0 = nodata] 
Hydropeaking_perc Percentage  of water courses with hydropeaking in catchment 

upstream [%] - Total Length of water courses in catchment upstream 
= 100% [-999 = nodata] 

RiverChan_YN River channelization in catchment  upstream [1 = yes, 2 = no, 0 = 

nodata] 
RiverChan_perc Percentage of channelized water courses  in catchment upstream [%] 

- Total Length of water courses in catchment upstream = 100% [-999 
= nodata] 

WaterAbstraction_YN Water abstraction in catchment upstream [1 = yes, 2 = no, 0 = 
nodata] 

WaterAbstraction_perc Percentage of water courses  with residual flow in catchment upstream 

[%] - Total Length of water courses in catchment upstream = 100% 
[-999 = nodata] 

tot_pres_hymo Percentage of water courses affected by at least one HyMo pressure - 
each water course ist only counted once - Total Length of water 
courses in catchment upstream = 100% (value must not exceed 
100%) [-999 = nodata] 

SurfWaterAbstr_YN Surface water abstraction [1 = yes, 2 = no, 0 = nodata] 

SurfWaterAbstr_perc Percentage of water courses affected by surface water abstraction in 
catchment upstream [%] Total Length of water courses in catchment 
upstream = 100%  [-999 = nodata] 

GroundwAbstr_YN Groundwater abstraction  in catchment upstream [1 = yes, 2 = no, 0 
= nodata] 

GroundwAbstr_perc Percentage of  water courses affected by groundwater abstraction  
upstream [%] Total Length of water courses in catchment upstream = 

100%  [-999 = nodata] 
FlowRegulation_YN Change of hydrological regime  in catchment upstream [1 = yes, 2 = 

no, 0 = nodata] 
FlowRegulation_perc Percentage of water courses affected by change of hydrological regime 

upstream [%] Total Length of water courses in catchment upstream = 
100%  [-999 = nodata] 

SedimentStor_YN Sediment storage  in catchment upstream  [1 = yes, 2 = no, 0 = 

nodata] 
SedimentStor_perc Percentage of water courses affected by sediment storage upstream 

[%] Total Length of water courses in catchment upstream = 100% [-
999 = nodata] 

MorphDike_YN Presence of embankments, levees or dikes  in catchment upstream [1 
= yes, 2 = no, 0 = nodata] 

MorphDike_perc Percentage of water courses affected by presence of embankments, 

levees or dikes upstream [%] Total Length of water courses in 
catchment upstream = 100%  [-999 = nodata] 

Sedim_artif_YN Artificially induced (increased) sedimentation (deposition)  in 
catchment upstream [1 = yes, 2 = no, 0 = nodata] 

Sedim_artif_perc Percentage of water courses affected by artificially induced (increased) 
sedimentation (deposition) upstream [%] Total Length of water 

courses in catchment upstream = 100%  [-999 = nodata] 
Sedim_extrac_YN Sand and gravel extraction, dredging  in catchment upstream [1 = 

yes, 2 = no, 0 = nodata] 
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Table continued 

Parameter Description 

Sedim_extrac_perc Percentage of water courses affected by sand and gravel extraction, 
dredging upstream [%] Total Length of water courses in catchment 
upstream = 100% [-999 = nodata] 

BarriersCatchmUp Presence of all barriers in catchment upstream [1 = yes, 2 = no, 0 = 
nodata] 

NumberBarrierUp Number of all barriers in catchment upstream  [-999 = nodata] 

NumberArtBarrierUp Number of artificial barriers upstream [-999 = nodata] 

NumberBarrFishPassUp Number of fish passable barriers upstream [-999 = nodata] 

Barriers_0 to 1 km_Up_YN Presence of all barriers from upstream end of the site  to 1 km 
upstream  [1 = yes, 2 = no, 0 = nodata] 

NumberBarrier_0 to 1 
km_up 

Number of all barriers from upstream end of the site  to 1 km 
upstream   [-999 = nodata] 

NumberArtBarrier_0 to 1 

km_up 

Number of artificial barriers from upstream end of the site  to 1 km 

upstream  [-999 = nodata] 
NumberBarrFishPass_0 to 
1 km_up 

Number of fish passable barriers from upstream end of the site  to 1 
km upstream [-999 = nodata] 

Barriers_1 to 5 km_Up_YN Presence of all barriers from 1  to 5 km upstream  [1 = yes, 2 = no, 0 
= nodata] 

NumberBarrier_1 to 5 
km_up 

Number of all barriers from 1  to 5 km upstream   [-999 = nodata] 

NumberArtBarrier_1 to 5 
km_up 

Number of artificial barriers from 1  to 5 km upstream  [-999 = 
nodata] 

NumberBarrFishPass_1 to 

5 km_up 

Number of fish passable barriers from 1  to 5 km upstream [-999 = 

nodata] 
Barriers_5 to 30 
km_Up_YN 

Presence of all barriers from 5  to 30 km upstream  [1 = yes, 2 = no, 
0 = nodata] 

NumberBarrier_5 to 30 
km_up 

Number of all barriers from 5  to 30 km upstream   [-999 = nodata] 

NumberArtBarrier_5 to 30 
km_up 

Number of artificial barriers from 5  to 30 km upstream  [-999 = 
nodata] 

NumberBarrFishPass_5 to 

30 km_up 

Number of fish passable barriers from 5  to 30 km upstream [-999 = 

nodata] 
BarriersCatchmDown Presence of barriers in catchment downstream [1 = yes, 2 = no, 0 = 

nodata] 
NumberBarrierDown Number of barriers in catchment downstream  [-999 = nodata] 

NumberArtBarrierDown Number of artificial barriers downstream [-999 = nodata] 

NumberBarrFishPassDown Number of fish passable barriers downstream [-999 = nodata] 

Barriers_0 to 1 
km_down_YN 

Presence of all barriers from downstream end of the site  to 1 km 
downstream  [1 = yes, 2 = no, 0 = nodata] 

NumberBarrier_0 to 1 
km_down 

Number of all barriers  from downstream end of the site  to 1 km 
downstream   [-999 = nodata] 

NumberArtBarrier_0 to 1 
km_down 

Number of artificial barriers  from downstream end of the site  to 1 km 
downstream  [-999 = nodata] 

NumberBarrFishPass_0 to 
1 km_down 

Number of fish passable barriers  from downstream end of the site  to 
1 km downstream [-999 = nodata] 

Barriers_1 to 5 

km_down_YN 

Presence of all barriers from 1  to 5 km downstream  [1 = yes, 2 = 

no, 0 = nodata] 

NumberBarrier_1 to 5 
km_down 

Number of all barriers from 1  to 5 km downstream   [-999 = nodata] 

NumberArtBarrier_1 to 5 
km_down 

Number of artificial barriers from 1  to 5 km downstream  [-999 = 
nodata] 

NumberBarrFishPass_1 to 
5 km_down 

Number of fish passable barriers from 1  to 5 km downstream [-999 = 
nodata] 

Barriers_5 to 30 
km_down_YN 

Presence of all barriers from 5  to 30 km downstream  [1 = yes, 2 = 
no, 0 = nodata] 

NumberBarrier_5 to 30 
km_down 

Number of all barriers from 5  to 30 km downstream   [-999 = 
nodata] 
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Table continued 

Parameter Description 

NumberArtBarrier_5 to 30 
km_down 

Number of artificial barriers from 5  to 30 km downstream  [-999 = 
nodata] 

NumberBarrFishPass_5 to 
30 km_down 

Number of fish passable barriers from 5  to 30 km downstream [-999 
= nodata] 

DistNextBarrUp Distance to next impassable barrier upstream -> Startpoint = 
upstream end of case study site [km] [-999 = nodata] 

DistNextBarrDown Distance to next impassable barrier downstream -> Startpoint = 

downstream end of case study site [km] [-999 = nodata] 
ReporterID_preshymo name and organisation of the person who obtained the data 

DataSourceID_preshymo database name, report, etc. of the obtained data  

Comment_preshymo Any other comment 

other pressures_YN If there are other pressures, which are not named 

other pressures_perc If there are other pressures, which are not named 

 

 

Table 12-15 Variables and descriptions of the database sheet “Pressure point / diffuse 

sources” 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 
name_casestudy type -> eg.: FI_Kuiv_R1, AT_Drau_D1, etc.) 

sewage_plants_YN water bodies in the catchment upstream affected by municipal sewage 
treatment plants   [1 = yes, 2 = no, 0 = nodata] 

sewage plants_perc Percentage of water courses affected by municipal sewage treatment 
plants  in catchment upstream [%] Total Length of water courses in 
catchment upstream = 100%  [-999 = nodata] 

comb_sewers_YN Water bodies in the catchment upstream affected by combined sewers 
(Sewers carrying both sewage and stormwater together)  [1 = yes, 2 
= no, 0 = nodata] 

comb_sewers_perc Percentage of water courses affected by combined sewers (Sewers 
carrying both sewage and stormwater together) in catchment 
upstream [%] Total Length of water courses in catchment upstream = 
100% [-999 = nodata] 

industrial_YN water bodies in the catchment upstream affected by industrial facilities 
(including manufacturing, oil and gas extraction, and service 
industries)  [1 = yes, 2 = no, 0 = nodata] 

industrial_perc Percentage of water courses affected by industrial facilities (including 
manufacturing, oil and gas extraction, and service industries) in 
catchment upstream [%] Total Length of water courses in catchment 
upstream = 100%  [-999 = nodata] 

mining_YN water bodies in the catchment upstream affected by priority 
substances  [1 = yes, 2 = no, 0 = nodata] 

mining_perc Percentage of water courses affected by priority substances in 

catchment upstream [%] Total Length of water courses in catchment 
upstream = 100%  [-999 = nodata] 

thermal_poll_YN water bodies in the catchment upstream affected by priority 

substances  [1 = yes, 2 = no, 0 = nodata] 
thermal_poll_perc Percentage of water courses affected by priority substances in 

catchment upstream [%] Total Length of water courses in catchment 

upstream = 100%  [-999 = nodata] 
Prior_subst_YN water bodies in the catchment upstream affected by priority 

substances  [1 = yes, 2 = no, 0 = nodata] 
Prior_subst_per Percentage of water courses affected by priority substances in 

catchment upstream [%] Total Length of water courses in catchment 
upstream = 100% [-999 = nodata] 

 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 196 of 240  

Table continued 

Parameter Description 

agricult_YN water bodies in the catchment upstream affected by nutrients, 
pesticides, herbicides, fertilizers, animal wastes  [1 = yes, 2 = no, 0 = 
nodata] 

agricult_perc Percentage of water courses affected by nutrients, pesticides, 
herbicides, fertilizers, animal wastes in catchment upstream [%] Total 
Length of water courses in catchment upstream = 100% [-999 = 
nodata] 

tot_pres_point_YN Point sources present in the catchment upstream (like industrial 
facilities, mining,sewage plants ) [1 = yes, 2 = no, 0 = nodata] 

tot_pres_point_perc Percentage of water courses affected by point sources in catchment 
upstream [%] Total Length of water courses in catchment upstream = 
100% [-999 = nodata] 

tot_pres_difus_YN Diffuse sources present in the catchment upstream (like sediments, 

nutrients, pesticides, herbicides, fertilizers,animal wastes) [1 = yes, 2 

= no, 0 = nodata] 
tot_pres_difus_perc Percentage of water courses affected by diffuse sources in catchment 

upstream [%] Total Length of water courses in catchment upstream = 
100% [-999 = nodata] 

tot_pres_sourc_YN Point and/or diffuse sources present in the catchment upstream  [1 = 
yes, 2 = no, 0 = nodata] 

tot_pres_sourc_perc Percentage of water courses affected by point and /or diffuse sources 
in catchment upstream [%] - each water course ist only counted once 
- Total Length of water courses in catchment upstream = 100% (value 
must not exceed 100%) [-999 = nodata] 

ReporterID_pres_sourc name and organisation of the person who obtained the data 

DataSourceID_pres_sourc database name, report, etc. of the obtained data 

Comment_pres_sourc Any other comment 

other pressures_YN If there are other pressures in the catchment upstream, which are not 
named 

other pressures_perc 
If there are other pressures in the catchment upstream, which are not 

named 

 

 

Table 12-16 Variables and descriptions of the database sheet “Physico-chemical data” 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 

name_casestudy type -> eg.: FI_Kuiv_R1, AT_Drau_D1, etc.) 

pH_data_year Year of pH data  [yyyy; -999 = nodata] 

pH_site_mean PH 0-14; mean value at case study site [-999 = nodata] 

pH_site_min PH 0-14; minimum value at case study site [-999 = nodata] 

pH_site_max PH 0-14; maximum value at case study site [-999 = nodata] 

pH_mean_5_up PH 0-14; mean value for 5km catchment upstream -> Startpoint = 

upstream end of case study site  [-999 = nodata] 

DataSource__PCD_pH database name, report, etc. of the obtained data  

Conduc_data_year Year of Conductivity data [yyyy; -999 = nodata] 

Conduc_site_mean Electrical conductivity, mean value [microS/cm]; [-999 = nodata] 

Conduc_site_min Electrical conductivity, [microS/cm] minimum value at case study site 
[-999 = nodata] 

Conduc_site_max Electrical conductivity,  [microS/cm] maximum value at case study 
site [-999 = nodata] 
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Table continued 

Parameter Description 

Conduc_mean_5_up Electrical conductivity,  [microS/cm]; mean value for 5km 
catchment upstream -> Startpoint = upstream end of case study 
site  [-999 = nodata] 

DataSource__PCD_conductivity database name, report, etc. of the obtained data 

TN_data_year Year of total Nitrogen data [yyyy; -999 = nodata] 

TN_site_mean Total Nitrogen [mg/l] mean value at case study site [-999 = 
nodata] 

TN_site_min Total Nitrogen [mg/l] minimum value at case study site [-999 = 
nodata] 

TN_site_max Total Nitrogen [mg/l] maximum value at case study site [-999 = 
nodata] 

TN_mean_5_up Total Nitrogen [mg/l] mean value for 5km catchment upstream -
> Startpoint = upstream end of case study site  [-999 = nodata] 

DataSource__PCD_TN database name, report, etc. of the obtained data 

TOC_data_year Year of total organic carbon data  [yyyy; -999 = nodata] 

TOC_site_mean Total organic carbon [mg/l] mean value at case study site [-999 
= nodata] 

TOC_site_min Total organic carbon [mg/l] minimum value at case study site [-
999 = nodata] 

TOC_site_max Total organic carbon [mg/l] maximum value at case study site [-
999 = nodata] 

TOC_mean_5_up Total organic carbon [mg/l] mean value for 5km catchment 
upstream -> Startpoint = upstream end of case study site  [-999 
= nodata] 

DataSource__PCD_TOC database name, report, etc. of the obtained data 

BOD5_data_year Year of biological oxygen demand data  [yyyy; -999 = nodata] 

BOD5_site_mean Biological oxygen demand [mg/l] mean value at case study site [-
999 = nodata] 

BOD5_site_min Biological oxygen demand [mg/l] minimum value at case study 
site [-999 = nodata] 

BOD5_site_max Biological oxygen demand [mg/l] maximum value at case study 
site [-999 = nodata] 

BOD5_mean_5_up Biological oxygen demand [mg/l] mean value for 5km catchment 

upstream -> Startpoint = upstream end of case study site  [-999 
= nodata] 

DataSource__PCD_BOD5 database name, report, etc. of the obtained data 

NO2_data_year Year of Nitrite data  [yyyy; -999 = nodata] 

NO2_site_mean Nitrite [mg/l] mean value at case study site [-999 = nodata] 

NO2_site_min Nitrite [mg/l] minimum value at case study site [-999 = nodata] 

NO2_site_max Nitrite [mg/l] maximum value at case study site [-999 = nodata] 

NO2_mean_5_up Nitrite [mg/l] mean value for 5km catchment upstream -> 
Startpoint = upstream end of case study site  [-999 = nodata] 

DataSource__PCD_NO2 database name, report, etc. of the obtained data 

NO3_data_year Year of Nitrate data [yyyy; -999 = nodata] 

NO3_site_mean Nitrate [mg/l] mean value at case study site [-999 = nodata] 

NO3_site_min Nitrate [mg/l] minimum value at case study site [-999 = nodata] 

NO3_site_max Nitrate [mg/l] maximum value at case study site [-999 = nodata] 

NO3_mean_5_up Nitrate [mg/l] mean value for 5km catchment upstream -> 
Startpoint = upstream end of case study site  [-999 = nodata] 

DataSource__PCD_NO3 database name, report, etc. of the obtained data 

NH3_data_year Year of Ammonium data  [yyyy; -999 = nodata] 

NH3_site_mean Ammonia [mg/l] mean value at case study site [-999 = nodata] 
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Table continued 

Parameter Description 

NH3_site_min Ammonia [mg/l] minimum value at case study site [-999 = 
nodata] 

NH3_site_max Ammonia [mg/l] maximum value at case study site [-999 = 
nodata] 

NH3_mean_5_up Ammonia [mg/l] mean value for 5km catchment upstream -> 
Startpoint = upstream end of case study site  [-999 = nodata] 

DataSource__PCD_NH3 database name, report, etc. of the obtained data 

NH4_data_year Year of Ammonium (NH4+) data  [yyyy; -999 = nodata] 

NH4_site_mean Ammonium [mg/l] mean value at case study site [-999 = nodata] 

NH4_site_min Ammonium [mg/l] minimum value at case study site  [-999 = 

nodata] 
NH4_site_max Ammonium [mg/l] maximum value at case study site  [-999 = 

nodata] 

NH4_mean_5_up Ammonium[mg/l] mean value for 5km catchment upstream -> 
Startpoint = upstream end of case study site   [-999 = nodata] 

DataSource__PCD_NH4 database name, report, etc. of the obtained data 

Cl_data_year Year of chloride data  [yyyy; -999 = nodata] 

Cl_site_mean Chloride [mg/l] mean value at case study site [-999 = nodata] 

Cl_site_min Chloride [mg/l] minimum value at case study site [-999 = 

nodata] 
Cl_site_max Chloride [mg/l] maximum value at case study site [-999 = 

nodata] 
Cl_mean_5_up Chloride [mg/l] mean value for 5km catchment upstream -> 

Startpoint = upstream end of case study site  [-999 = nodata] 
DataSource__PCD_Cl database name, report, etc. of the obtained data 

OrPh_data_year Year of Ortho-phosphate  data  [yyyy; -999 = nodata] 

OrPh_site_mean Ortho-phosphate [microg/l] mean value at case study site [-999 
= nodata] 

OrPh_site_min Ortho-phosphate [microg/l] minimum value at case study site [-

999 = nodata] 
OrPh_site_max Ortho-phosphate [microg/l] maximum value at case study site [-

999 = nodata] 
OrPh_mean_5_up Ortho-phosphate [microg/l] mean value for 5km catchment 

upstream -> Startpoint = upstream end of case study site  [-999 
= nodata] 

DataSource__PCD_OrPh database name, report, etc. of the obtained data 

PO4_data_year Year of total-phosphate data  [yyyy; -999 = nodata] 

PO4_site_mean Total-phosphate [microg/l] mean value at case study site [-999 = 
nodata] 

PO4_site_min Total-phosphate [microg/l] minimum value at case study site [-
999 = nodata] 

PO4_site_max Total-phosphate [microg/l] maximum value at case study site [-
999 = nodata] 

PO4_mean_5_up Total-phosphate [microg/l] mean value for 5km catchment 
upstream -> Startpoint = upstream end of case study site  

DataSource__PCD_PO4 database name, report, etc. of the obtained data 

ReporterID_PCD name and organisation of the person who obtained the data 

Comment_PCD Any other comment 
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Table 12-17 Variables and descriptions of the database sheet “Additional Parameters” 

Parameter Description 

StationCode Station code; unique internal or national code (land code_river 

name_casestudy type -> eg.: FI_Kuiv_R1, AT_Drau_D1, etc.) 

GDP_data_year Year of GDP data [yyyy; -999 = nodata] 

GDP Gross domestic product - mean value of all municipalities in catchment 

upstream [-999 = nodata] 

DataSource__GDP database name, report, etc. of the obtained data 

pop_den_data_year Year of population density data [yyyy; -999 = nodata] 

popul_density inhabitants per km2 - in catchment upstream [yyyy; -999 = nodata] 

DataSource__pop_den database name, report, etc. of the obtained data  

ReporterID_addIn name and organisation of the person who obtained the data 

Comment_addIn Any other comment 
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12.2 Annex B: Description of restoration projects and study 

sections 

 

Large restoration project Drava (AT_R1) 

 

   

Figure 12-1 Large restoration project AT_R1 (left: Amt der Kärntner LR, Abt.16L; S. 

Tichy, right: BOKU, IHG) 

The large restoration project in Austria AT_R1 is situated at the river Drava in the 

western part of the federal province Carinthia near the village Kleblach. At this point the 

upper catchment measures about 2433 km². The mean discharge near the site is 

62.6 m³/s. In this section the Drava is a 7th order stream and is assigned to the fish 

region Hyporhithral. 

In the years from 2002 to 2003 several restoration measures were implemented over a 

total length of 1.9 km. On a length of 1.3 km bank fixation was removed and the river 

bed was widened up to 45 m in several sections. A secondary channel was created with a 

length of 500 m and a width of 30 m. These measures aimed at stabilizing the river bed 

and the groundwater level, the creation of gravel banks and the increase of in-stream 

and bank structures. One of the former side arms was reconnected to the river for annual 

flooding. This reconnection of floodplain water bodies with the main channel was 

intended to prevent aggradation processes and provide habitats for juvenile fish and 

stagnophil fish species. Additionally agricultural land was purchased for the establishment 

of new floodplain forests (IHG, 2008; Mandler, 2004). 
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Small restoration project Enns (AT_R2) 

 

   

Figure 12-2 Small restoration project AT_R2 (BOKU, IHG) 

The small restoration project in Austria AT_R2 is situated at the river Enns in the federal 

province Styria near the village Aich. At this point the upper catchment measures about 

809 km². The mean discharge near the site is 21.5 m³/s. In this section the Enns is a 5th 

order stream and is assigned to the fish region Metarhithral. 

In the years from 2003 to 2004 due to efforts to reduce the flood risk for the village Aich 

protection and restoration measures were implemented. For the protection of the village 

Aich on the left side of the river an 800 m long flood protection dam was built. In the 

upper section the bank fixation was removed on the left side and the river bed was 

widened on a length of 80 m. A new 170 m long secondary channel was created and the 

new cut bank was shaped with biological engineering measures. The estuary of a former 

side channel of the Enns was transferred upstream into the new side arm. The barriers 

for fish migration in this former side channel were removed. Downstream of the bridge 

the river bed was widened on the right bank. Gravel bars were shaped roughly and dead 

wood structures were initiated (IHG, 2008; Mandler, 2004). 

  



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 202 of 240  

Large restoration project Thur (CH_R1) 

 

   

 

Figure 12-3 Large restoration project CH_R1. Upper left: Gravel bar on the left side of the 

river, and presence of wood within the main river channel (A. Paillex, Eawag), upper 

right: part of the restored site with the main river channel on the left of the photo, 

stagnant water body and alluvial forest on the right (A. Paillex Eawag), lower: view from 

the middle part of the restored site toward downstream (H. Mottaz, Eawag). 

The large restoration project in Switzerland CH_R1 is situated at the river Thur in the 

north east of Switzerland near the villages Niederneunforn and Altikon. At this point the 

upper catchment measures about 1605 km². The mean discharge near the site is 

52.9 m³/s. In this section the Thur is a 7th order stream and is assigned to the fish region 

Epipotamal. 

The restored reach is 1.55 km in length and was restored in 2002. The river was widened 

on one side of the main river channel. Embankments along the right side of the river 

were removed to provide a larger space to the river. Additional artificial structures were 

added to enhance the ability of the river to braid. Both are expected to increase diversity 

of instream habitats and corresponding biota. Restoration efforts recreated patterns of 

erosion and deposition, as well as large gravel bars along the main river channel. 

Restoration is expected to enhance the terrestrial biodiversity living along and on the re-

created gravel bars, and a higher frequency of interaction between the river and the old-

disconnected floodplain is expected to happen. 
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Small restoration project Töss (CH_R2) 

 

   

 

Figure 12-4 Small restoration project CH_R2. Upper right: view from downstream toward 

the upper part of the restored site (Eawag, P. Reichert), upper left: view from the upper 

part toward the lower part of the restored site (Eawag, P. Reichert), lower right: detail of 

artificial structure to force the river to create islands (Eawag, P. Reichert) 

The small restoration project in Switzerland CH_R2 is situated at the river Töss in the 

north east of Switzerland. At this point the upper catchment measures about 188 km². 

The mean discharge near the site is 9.9 m³/s. In this section the Töss is a 6th order 

stream and is assigned to the fish region Metarhithral. 

The 200 m long site was restored in 1999. Before restoration, the river was fully 

embanked and was a straight canal. During restoration, the river was widened on both 

sides of the main river channel. Along the course of the river, embankments were 

removed to provide a large space to the river (Figure 12-4). Additional wood structures 

and blocks of stone were added to enhance the ability of the river to recreate islands 

(Figure 12-4). Restoration efforts are expected to increase diversity of instream habitats 

and corresponding biota. In parallel, recreating gravel bars and islands is expected to 

enhance the terrestrial biodiversity living along fluvial corridors. 
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Large restoration project Becva (CZ_R1) 

 

 

Figure 12-5 Large restoration project CZ_R1 (Karel Brabec) 

The large restoration project in the Czech Republic CZ_R1 is situated at the Becva River 

(Danube water basin) near the village Osek nad Becvou. At this point the upper 

catchment measures about 1532 km². The mean discharge near the site is 16.6 m³/s. In 

this section the Becva River is a 7th order stream and is assigned to the fish region 

Epipotamal. 

The large restoration project is one of five river stretches which were passively 

renaturalized by floods in 1997. In comparison with still regulated channels the 450 m 

long restored section is characterized by intensive erosional and depositional processes. 

Wider channel and intermittent occurrence of large woody debris in channel contribute to 

the development of hydromorphological features characteristic of braiding channel. 

Higher heterogeneity of river habitats was documented in terms of water chemistry, 

water temperature, substrate and aquatic biota. 
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Small restoration project Morava (CZ_R2) 

 

 

Figure 12-6 Small restoration project CZ_R2 (Karel Brabec) 

The small restoration project in the Czech Republic CZ_R2 is situated at the river Morava 

(Danube water basin). At this point the upper catchment measures about 2305 km². The 

mean discharge near the site is 17.7 m³/s. In this section the Morava is a 7th order 

stream and is assigned to the fish region Epipotamal. 

The small restoration project is a relatively short river stretch (220 m) where the bank 

protection was removed by floods in 1997. In comparison with the still regulated 

channel, the restored section is characterized by higher diversity of bank habitats, by 

ocurrence of gravel bars and side pools. The upstream river segment is characterized by 

hydromorphologicaly valuable structures (meandering channel connected with floodplain 

and containing large woody debris). 
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Large restoration project Ruhr (DM_R1) 

 

 

Figure 12-7 Large restoration project DM_R1 (UDE) 

The large restoration project in the German mountain area DM_R1 is situated at the river 

Ruhr in the Federal State of Northrhine-Westfalia in the urban area of the city Arnsberg. 

At this point the upper catchment measures about 1054 km². The mean discharge near 

the site is 15.2 m³/s. In this section the Ruhr is a 3rd order stream and is assigned to the 

fish region lower grayling. 

In 2008 a reach 750 m in length was restored. The main aims of the restoration 

measures were to restore more natural hydromorphological conditions and to re-establish 

longitudinal connectivity. Moreover, it aimed to increase the aesthetic value of the river 

section and to raise people’s awareness of the importance of biodiversity by making 

nature tangible. The river bed was widened and the bank fixations were removed to 

initiate lateral erosion. Two secondary channels were created and sediment and large 

wood were added to enhance the instream structures of the site. 
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Small restoration project Lahn (DM_R2) 

 

   

   

Figure 12-8 Small restoration project DM_R2 (UDE) 

The small restoration project in the German mountain area DM_R2 is situated at the river 

Lahn in the Federal State of Hesse. At this point the upper catchment comprises about 

652 km². The mean discharge near the site is 12 m³/s. In this section the Lahn is a 3rd 

order stream and is assigned to the fish region lower grayling. 

In 2000 measures were implemented on a river length of 240 m. The main aim was a 

morphological improvement as the river course was straightened and natural instream 

habitats were largely missing. To initiate bankside erosion bank fixations were removed 

and a side arm was created. The river bed and banks were restructured to enhance 

habitat and biotic diversity. Placement of large wood was carried out to improve instream 

structures at the site. 
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Large restoration project Vääräjoki (FI_R1) 

 

   

Figure 12-9 Large restoration project FI_R1 (left: Jukka Aroviita, right: Jaana 

Rääpysjärvi) 

The Finnish large restoration project FI_R1 is situated at the river Vääräjoki. At this point 

the upper catchment measures about 835 km². The mean discharge at the site is 

9.9 m³/s. In this section the Vääräjoki is a 4th order stream and is assigned to the fish 

region brown trout-European bullhead. 

In the timeframe from 1997 to 2006 all the rapids in section from 13 km to 29 km of the 

river mouth have been restored. One of the rapids is situated within the 1.4 km long 

large restored section FI_R1. The stream bottom was rearranged using boulders that had 

originally been removed from the channel during channelization and placed along stream 

margins Also gravel beds were created to provide nursery habitat for salmonids. The aim 

of the restoration was to return the heavily modified river closer to natural hydrological 

and morphological state and especially enable the breeding and migration of fish 

(Aronen, 1996; HERTTA). 
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Small restoration project Kuivajoki (FI_R2) 

 

   

Figure 12-10 Small restoration project FI_R2 (Jaana Rääpysjärvi) 

The Finnish small restoration project FI_R2 is situated at the river Kuivajoki. At this point 

the upper catchment measures about 976 km². The mean discharge at the site is 

12.8 m³/s. In this section the Kuvajoki is a 4th order stream and is assigned to the fish 

region salmon-European bullhead. 

In Kuivajoki, altogether about 5 km of the river (consisting of multiple riffle sections in 

the river) were restored in early 2000s. The stream bottom was rearranged using 

boulders were removed from the channel and placed along stream margins during 

channelization. Also gravel beds were created to provide nursery habitat for salmonids. 

The small restoration section FI_R2, called Hirvaskoski, at River Kuivajoki is 400 m long. 

Most of the boulders that were removed from the river during channelization were placed 

back in early 2000s to create more heterogeneous habitat for the stream biota (Aronen, 

1996; HERTTA). 
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Large restoration project Emån (SE_R1) 

 

   

Figure 12-11 Large restoration project  SE_R1. Aerial overview of the site of dam 

removal (left) and on-ground view of the restoration project upstream of dam removal 

(right) (SLU 2013) 

The Swedish large restoration project SE_R1 is situated near the old mill town of Emsfors 

in the River Emån in the south-east of Sweden. At this location the upper catchment 

measures about 4440 km². The mean discharge near the site is 29.3 m³/s. In this 

section the River Emån is a stream of 6th order and is assigned to the fish region 

hyporhithral. 

Restoration started in 2006 by permanently opening the dam lids of a former hydropower 

dam with the aim to restore longitudinal connectivity. In the same year, riffles damaged 

by timber floating located upstream the dam were restored. This was done to 

compensate for the drop in waterlevel upstream of the dam after dam removal, and thus 

to protect important floodplain habitats in this area, but also to improve the habitat for 

salmonid fish. The riffles were restored by boulder and salmonid spawning gravel 

additions. In total, a 900 m river stretch was restored. In 2010-2011 the hydropower 

dam and the hydropower station were completely removed and a fishway with low 

inclination was constructed to further improve conditions for fish migration at the site. 
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Small restoration project Mörrumsån (SE_R2)  

 

   

Figure 12-12 Small restoration project SE_R2. Overview (left) and view of the restored 

section (right) (SLU 2013) 

The Swedish small restoration project SE_R2 is situated near the village of Hemsjö in the 

River Mörrumsån in the south of Sweden. At this site, the upper catchment is ca. 

3264 km². At the site of restoration, i.e. the old dry channel, the mean discharge is 

12 m³/s, whereas the mean natural discharge in this area of River Mörrumsån is ca 

26 m³/s. In this section the Mörrumsån is a stream of 6th order and is assigned to the 

fish region hyporhithral. 

Between 2003 and 2012 several restoration measures have been implemented on a 

length of 3.3 km to restore longitudinal connectivity and to improve habitat conditions for 

salmonid fish. To restore longitudinal connectivity, fishways were constructed at the 

hydropower plants Hemsjö övre and Hemsjö nedre in 2003-2004 and water flow was 

increased in the dry channel between the hydropower stations. After the initial 

restoration of longitudal connectivity several habitat improvement projects were carried 

out in 2004-2006, 2010 and 2012. Spawning gravel was added along the site to improve 

and create new spawning grounds for salmonid fish. 
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Large restoration project Skjern (DK_R1) 

 

   

Figure 12-13 Large restoration project DK_R1. Overview of the restored 40 km reach in 

River Skjern (left) and closer view on part of the restored reach today 11 years after 

restoration (right) (Niels Bering Ovesen) 

The large restoration project in Denmark DK_R1 is situated at the river Skjern. At this 

point the upper catchment measures about 1553 km². The mean discharge near the site 

is 36.6 m³/s. In this section the Skjern is a 5th order stream.  

River Skjern is the second largest river in Denmark and drains the western part of the 

peninsula Jutland. The river was channelized in 1960 and wetlands in the floodplain were 

drained to improve conditions for agriculture. The river was restored from 1999-2002. 

This project is the largest single restoration project in Northern Europe. The main aim of 

the project was to enhance the nutrient retention and biodiversity by restoring the 

physical and hydrological dynamics of the river and floodplain. The restoration project 

included re-meandering of the river and re-establishment of the natural water levels and 

water level fluctuation in the river and its valley with the purpose of enhancing living 

conditions for plants and animals and safeguarding a high water quality in the river and 

in the downstream estuary, Ringkøbing Fjord. Specific biological targets included 

improved habitat conditions for migratory birds, improvements of floodplain and wetland 

vegetation and increased survival of salmonoid fish.  

The restoration work was initiated in June 1999 and was more or less finalized by 

autumn 2002. The main activities were excavation of about 40 km of new river course, 

removal of existing dikes from the land reclamation in the 1960s and the filling of the old 

channelised river reaches. Two pumping stations and a weir established in connection 

with the river channelisation were also removed. The activities also comprised 

construction of bridges and paths. Whenever possible, one of the original river banks 

from before the 1960s formed one of the banks of the restored river.  
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Small restoration project Storå (DK_R2) 

 

   

Figure 12-14 Small restoration project DK_R2. Overview of the site restored in River 

Storå left) and closer view on the gravel bar created in 2011 by addition of coarse 

material (right) (Niels Bering Ovesen) 

The Danish small restoration project DK_R2 is situated in the river Storå At this point the 

upper catchment measures about 878 km². The mean discharge near the site is 

16.1 m³/s. In this section the Skjern is 5th order stream. 

River Storå is the 3rd largest river in Denmark and drains the western part of the 

peninsula Jutland. Some parts of the river were channelized during 1950’s, however large 

reaches of the river have also been left untouched. Smaller in-stream habitat 

improvements have been conducted over the years, including addition of coarse material 

for improving salmonid spawning. The main aim of the project was to improve conditions 

for salmon in the Storeå by creating new spawning areas and additionally for lampreys 

being embraced by the EU Habitats Directive. Furthermore the project aimed at 

improving conditions for grayling that is currently declining in Denmark. In autumn in 

2011 a total amount of 700 m3 coarse substrates in the form of gravel, boulders and a 

few larger stones were added to a 50-60 m long reach in the Storå thereby increasing 

the area available for spawning for salmonoid fish. The addition of substrates is expected 

to increase the water level app. 20 cm just upstream of the gravel bar. 
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Large restoration project Lippe (DL_R1) 

 

   

Figure 12-15 Large restoration project DL_R1. Upstream view of the widened and 

shallow cross-section (left) and large wood placement (right) (UDE)  

The large restoration project in the German lowlands DL_R1 is situated at the river Lippe. 

At this point the upper catchment measures about 1896 km². The mean discharge near 

the site is 17.7 m³/s. In this section the Lippe is a stream of 3rd order and assigned to 

the fish region barbel. 

The 2 km long section was restored in 1996-1997. The bank fixation was removed, 

sediment was added to the channel bed to elevate it by 2 m to reconnect the river with 

its former floodplain. Furthermore the channel was widened from 13 to 45 m. Several 

large trees were placed in the reach to initiate natural channel dynamics and to increase 

local depth variability. Floodplain land-use was restricted to extensive grazing by 

primitive Konik ponies and Taurus cattle to allow for natural succession of the floodplain 

vegetation. The agricultural drainage system was stuffed, except some local ponds. A 

ramp was built at the downstream end to prevent channel incision (ABU, 2014). 
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Small restoration project Spree (DL_R2) 

 

 

   

Figure 12-16 Small restoration project DL_R2. Overview (upper left, Landesumweltamt 

Brandenburg, aerialimagery 030.05.2009) 

The small restoration project in the German lowlands DL_R2 is situated at the river 

Spree. At this point the upper catchment measures about 6275 km². The mean discharge 

near the site is 14 m³/s. In this section the Spree is a 6th order stream and assigned to 

the fish region Metapotamal. 

The 950 m long restoration site was a former oxbow which was reconnected on both 

sides of the main channel. The former main channel was blocked by a gravel dam to 

redirect all flow through the new meander. The remaining old main stem stretch serves 

as new flow protected habitats and their depth and width variability slightly improved by 

alternating sand bars. The main aims of the restoration were to restore the natural 

hydrology, morphology and oxygen balance of the river; to improve water retention in 

the landscape and the development of habitats to improve benthic and rheophil species 

(Köhler et al., 2002). 
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Large restoration project Regge (NL_R1) 

 

   

Figure 12-17 Large restoration project NL_R1. Overview of the section (left, Waterschap 

Vechstromen) and on-ground view (right, Piet Verdonschot) 

The Dutch large restoration project NL_R1 is situated at the river Regge. At this point the 

upper catchment measures about 339 km². The mean discharge near the site is 

4.2 m³/s. In this section the Regge is a 4th order stream and assigned to the fish region 

of the bream zone. 

The section was restored in 2005-2006 over a length of 1.4 km. Two old meanders were 

excavated (based on topographical maps from 1900) and connected to the channelized 

riverbed. Subsequently, the latter was dammed, only acting as a bypass during peak 

discharges. The new meandering channel is less wide and shallower in comparison to the 

former main channel, improving instream conditions for biota through an increased 

current velocity. Furthermore, land use of the floodplain was changed from agriculture to 

nature, embankments were lowered and an underwater weir has been built to prevent 

bed erosion (Waterschap Regge en Dinkel, 2005).  
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Small restoration project Dommel (NL_R2) 

 

 

Figure 12-18 Small restoration project NL_R2 Dommel (Piet Verdonschot) 

The Dutch small restoration project NL_R2 is situated at the river Dommel. At this point 

the upper catchment measures about 399 km². The mean discharge near the site is 

2.6 m³/s. In this section the Dommel is a stream of 4th order and assigned to the fish 

region of the bream zone. 

The section was restored in 2007 over a length of 0.9 km. To create more habitat 

heterogeneity, two secondary channels were dug and the streambed was modified, 

resulting in more gently sloping banks. Other measures were the excavation of pools in 

the floodplain and the construction of a fishway (Waterschap de Dommel, 2007). 
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Large restoration project Narew (PL_R1) 

 

   

 

Figure 12-19 Large restoration project PL_R1. Overview (upper left, A. Bielenko, 

branches of the anastomosing river near Panki Village (upper right, WULS-SGGW) and 

near Rzedziany Village (lower left, WULS-SGGW) 

The Polish large restoration project PL_R1 is situated at the river Narew downstream the 

Narew national Park. At this point the upper catchment measures about 3680 km². The 

mean discharge near the site is 16.9 m³/s. In this section the Narew is a 2nd order 

stream and assigned to the fish region bream. 

In 1995 it was decided to restore the degraded section adjacent to the National Park. On 

a length of 9 km several restoration measures were implemented with the objectives to 

bring back a natural value of the river valley and to restore the naturally anastomosing 

river network. Underwater weir structures, functioning as thresholds, were built to raise 

water level and as consequence flooding old side arms and slowing down the water 

outflow form the area. Additionally old side channels were re-connected by removing 

excess sediment and vegetation (PTOP, 2012; Winiecki and Krupa, 2006; Winiecki et al. 

2009). 
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Small restoration project Warta (PL_R2) 

 

   

 

Figure 12-20 Small restoration project PL_R2 (WULS-SGGW) 

The Polish small restoration project PL_R2 is situated at the river Warta between 

Zagórów and the village Lad. At this point the upper catchment measures about 

14519 km². The mean discharge near the site is 45.3 m³/s. In this section the Warta is a 

2nd order stream and assigned to the fish region bream. 

The restoration actions were undertaken as a compensation project for losses caused by 

constructing a highway that damaged the other stretch of the river belonging to the 

Natura 2000 area. The restoration actions were performed in the years 2006-2008 on a 

length of 3 km. The aim of the restoration was the improvement of lateral connectivity 

between the main river channel and floodplain. The main implemented measures are 

related to re-connecting the river with oxbows and floodplain by building culverts, 

lowering the embankments at some points and clearing the old connections (PTOP, 2012; 

Winiecki and Krupa, 2006; Winiecki et al. 2009). 
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Table 12-18 Characteristics of the large restoration projects (R1) 

 

 

Site name AT_R1 CH_R1 CZ_R1 DM_R1 FI_R1 SE_R1 DK_R1 DL_R1 NL_R1 PL_R1_1 

Country Austria Switzerland Czech Republic Germany Finland Sweden Denmark Germany Netherlands Poland 

River name Drau Thur Becva Ruhr Vääräjoki Emån  Skjern Lippe Regge Narew 

River type Gravel-bed Gravel-bed Gravel-bed Gravel-bed Gravel-bed Gravel-bed Sand-bed Sand-bed Sand-bed Sand-bed 

Latitude (N) 46.75454 47.5918 49.4968975 51.44093 64.054433 57.149095 55.9380926 51.663675 52.4384 53,1500527 

Longitude (E ) 13.309393 8.77114 17.5211533 7.96223 24.2206639 16.441897 8.6279814 8.23248 6.4417 22,8716193 

Altitude (m a.s.l.) 570 371 232 153 60 10 10 72 6 139 

Catchment geology siliceous calcareous siliceous siliceous organic siliceous siliceous siliceous siliceous organic 

Corine Land Cover (%)            

artificial surfaces 2 8 6 7 1 2 3 9 13 2 

agricultural areas 8 59 43 36 15 13 75 65 70 62 

forest and 

seminatural areas 

90 33 51 57 75 80 20 26 17 34 

wetlands 0 0 0 0 8 1 2 0 0 2 
water bodies 0 0 0 0 1 5 0 0 0 0 

Catchment size (km²) 2433 1605 1532 1054 835 4440 1553 1896 339 3680 

Mean discharge (m³/s) 62.6 52.9 16.6 15.2 9.9 29.3 36.6 17.7 4.2 16,9 

Stream order 7 7 7 3 4 6 5 3 4 2 

Ecoregion Alps Alps Hungarian 

lowlands 

Central 

Highlands 

Fenno-scandian 

shield 

Fenno-scandian 

shield 

Central plains Central plains Western plains Eastern plains 

Restoration Length 

(km) 

1.9 1.55 0.45 0.75 1.4 0.9 26 2 1.4 9 

Local channel slope 
(%) 

0.34 0.09 0.2 0.08 0.13 0.24 0.2 0.03 0.005 0,06 

Restoration date 2002-2003 2002 1997 2008 1997-2006 2006-2011 2003 1997 2005-2006 1995-cont. 

Main measures riverbed 

widening; 

(partial 

removal of 

bank fixation; 

initiation of 

secondary 

channel; 
reconnection of 

one sidearm) 

riverbed 

widening; 

(enhancement 

of flood 

protection and 

biota diversity, 

removal of 

embankments) 

riverbed 

widening 

riverbed 

widening 

instream 

measures 

Hydro RivCon 

(dam removal, 

naturalise flow 

regime, 

fishway constr, 

salmonid 

spawning 

gravel and 
boulder 

additions) 

re-meandering 

and 

reconnection of 

wetlands 

re-meandering re-meandering 

and 

reconnection 

reconnection 

side channels 

(rise water 

level by 

thresholds) 
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Table 12-19 Characteristics of the small restoration projects (R2) 

Site name AT_R2 CH_R2 CZ_R2 DM_R2 FI_R2 SE_R2 DK_R2 DL_R2 NL_R2_2 PL_R2 

Country Austria Switzerland Czech Republic Germany Finland Sweden Denmark Germany Netherlands Poland 

River name Enns Töss Morava Lahn Kuivajoki Mörrumsån Stora Spree Dommel Warta 

River type Gravel-bed Gravel-bed Gravel-bed Gravel-bed Gravel-bed Gravel-bed Sand-bed Sand-bed Sand-bed Sand-bed 

Latitude (N) 47.42112 47.46338 49.6570728 50.86588 65.6860429 56.336005 56.3614934 52.377747 51.4103 52,1930314 

Longitude (E ) 13.816094 8.72825 17.2179975 8.79088 25.6349874 14.700237 8.4982852 13.878897 5.4375 17,8974616 

Altitude (m a.s.l.) 692 453 218 191 74 87 10 35 18 75 

Catchment geology calcareous/ 
siliceous 

calcareous siliceous siliceous organic siliceous siliceous siliceous siliceous calcareous 

Corine Land Cover (%)            

artificial surfaces 4 4 5 6 0 2 7 7 17 6 

agricultural areas 12 36 50 40 1 12 80 49 57 69 

forest and 

seminatural areas 

84 59 45 54 67 73 11 41 24 25 

wetlands 0 0 0 0 29 1 1 0 1 0 

water bodies 0 0 0 0 3 13 0 3 0 1 

Catchment size (km²) 809 188 2305 652 976 3264 878 6275 399 14519 

Mean discharge (m³/s) 21.5 9.9 17.7 12 12.8 12 16.1 14 2.6 45,3 

Stream order 5 6 7 3 4 6 5 6 4 2 

Ecoregion Alps Alps Hungarian 

lowlands 

Central 

Highlands 

Fenno-scandian 

shield 

Fenno-scandian 

shield 

Central plains Central plains Central plains Central plains 

Restoration Length 

(km) 

0.6 0.21 0.22 0.24 0.4 3.3 0.3 0.95 0.9 3 

Local channel slope (%) 0.46 0.52 0.15 0.02 0.26 0.8 0.2 0.015 0.015 0,08 

Restoration date 2003-2004 a) 1999 b) 

2010 

1997 2000 2002-2006 2003-2012 2012 2005 2007 2008 

Main measures riverbed 
widening 

(partial 

removal of 

bank fixation; 

initiation of one 

secondary 

channel)  

riverbed 
widening 

(enhance biota 

diversity, 

remove 

embankments) 

riverbed 
widening 

riverbed 
widening 

instream 
measures 

Hydro RivCon 
(increased 

flow, fishway 

construction 

and salmonid 

spawning 

gravel 

additions) 

instream 
measures 

(habitat 

restoration: 

salmonid 

spawning 

gravel) 

remeandering excavation of 
secondary 

channels, 

streambed 

modifications 

reconnection  
floodplain 
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12.3 Annex C: Hydromorphological effects - detailed results  

Results of the hydromorphological survey  

The comparison of the effect sizes of the survey parameter “mean hymo survey 

evaluation” (Mean_hymo), which represents the mean of 14 single parameters, reveals 

first differences between the restoration projects. 19 of the 20 restored sections showed 

a positive restoration effect; the one exception was a small restored section at the river 

Dommel (NL_R2). All large restored sections (R1) showed significant differences to the 

degraded ones; at small restoration extent (R2) only half of the sections differed 

significantly.  

 

Figure 12-21 Restoration effect of “mean hymo survey evaluation” (Mean_hymo_RR) for 

gravel-bed rivers (6) differentiated by restoration extent (R1/R2) per country. Mann-

Whitney U-Tests R1 vs. R2, p-values were added to the plots (*p < 0.05 significant).  

 

p=0.059 p=0.400 *p=0.031 

p=0.172 p=0.270 p=0.525 
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Figure 12-22 Restoration effect of “mean hymo survey evaluation” (Mean_hymo_RR) for 

sand-bed rivers (4) differentiated by restoration extent (R1/R2) per country. Mann-

Whitney U-Tests R1-R2, p-values were added to the plots (*p < 0.05 significant).  

 

Mesohabitat results of case study sites 

The change in the “number of natural channel features” along transects 

(NMchanfeat_nat) within the 20 paired restoration projects is illustrated in Figure 12-23. 

In half of the restoration projects (AT, CH, CZ, DM, SE) positive restoration effects were 

evident for both sections with large (R1) and small (R2) restoration. No difference or 

even lower values were detected in DK, FI, PL, NL for either large or small restoration, in 

DL at small restorated sections. Figure 12-24 visualizes the variation of “number of 

natural substrate types” along transects (NMsubstr_nat). In many cases an increase of 

natural substrate types could be proven, except for DK, NL, FI, PL at large restored 

sections and for DL, NL, PL for small restoration.  

Overall, many restored sections show significantly positive restoration effects for 

NMchanfeat_nat “number of channel features” (11 out of 20 cases) and NMsubstr_nat 

“number of natural dominant substrate” (9) (pairwise comparisons R1/D1 – R2/D2 Mann-

Whitney U-test, p<0.05 – see Table 12-20 This indicates an increase in habitat diversity 

at the mesohabitat level within the river channel and investigated floodplain area. Within 

both parameters, no significantly negative effect was found. 

 

 

 

 

 

*p=0.001 p=0.339 *p=0.005 

p=0.529 
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Figure 12-23 Variation of “number of natural channel features” (NMchanfeat_nat) of 

D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – sections located at river with 

large restoration; 2 – sections located at river with small restoration) 
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Figure 12-24 Variation of “number of natural dominant substrates” (NMsubstr_nat) of 

D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – sections located at river with 

large restoration; 2 – sections located at river with small restoration) 

 

The parameter “share of main channel width” of total length of transects 

(Mainchan_share) should reflect the dominance of the river channel in relation to other 

channel features along a river cross section. We assumed that in restored sections the 

“share of main channel width” is significantly lower than in degraded ones due to a more 

diversified morphology. Figure 12-25 proves this assumption in general; in five case 

study sites (AT, CH, DK, DM, PL) it is demonstrated for both restoration extents (R1 and 

R2). In FI, only the small restoration (R2) shows a lower share of main channel 

compared to the degraded sections, whereas in CZ, DL, NL, SE large restored sections 

correspond to our assumption.  

Accordingly, in 12 out of 20 cases the positive difference between restored and degraded 

sections was statistically significant (pairwise comparisons R1/D1 – R2/D2 Mann-Whitney 

U-test, p<0.05 – see Table 12-20). 
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Figure 12-25 Variation of “share of main channel width of total transect length in %” 

(Mainchan_share) of D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – 

sections located at river with large restoration; 2 – sections located at river with small 

restoration) 

Referring to several studies about restoration effects (Jähnig et al. 2008, Feld et al. 

2014), we calculated diversity indices (SWI, SDI) for channel features and dominant 

substrate. The results shown in Figure 12-26 (SWI) and Figure 12-28 (SDI) for channel 

features correspond strongly to Figure 12-23 (NMchanfeat_nat “number of channel 

features”). This is consistent because the SWI considers the number of channel features 

and the proportion of each feature in a transect. Taking into account the spatial 

composition of channel features along the transect (SDI, Figure 12-28), we were unable 

to identify a further differentiation between restored and degraded sections. The trend of 

changes remained the same as in Figure 12-23. Significantly positive differences of 

SDI_chanfeat ”SDI channel features” between restored and degraded sections were 

slightly reduced (10 out of 20 cases) compared to NMchanfeat_nat, whereas one section 

now showed a significantly negative change (DK_R1; Table 12-20). 

The SWI index of substrate diversity along transects (Figure 12-27) reflects the results in 

Figure 12-24 (NMsubstr_nat “number of substrate classes”). However, significant values 

are strongly reduced (Table 12-20). Only four case study sites out of 20 show 

significantly positive differences between restored and degraded sections; NL_R2 shows 

a significantly negative effect. This result is consistent with the SDI parameter of 

substrate diversity (SDI_substrate “Spatial Diversity Index of substrate classes” Figure 

12-29). No finer distinction between restored and degraded sites was achieved by 

considering the spatial composition of substrate types along transects. Only in one case 

(PL_R2) there was a significantly positive change of SDI_substrate (Table 12-20) 
whereas both restored sections in NL showed a significantly negative change. 
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Figure 12-26 Variation of “Shannon–Wiener diversity index of natural channel features” 

(SWI_chanfeat) of D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – sections 

located at river with large restoration; 2 – sections located at river with small 

restoration) 
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Figure 12-27 Variation of “Shannon–Wiener diversity index of natural substrate” 

(SWI_substrate) of D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – sections 

located at river with large restoration; 2 – sections located at river with small 

restoration) 
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Figure 12-28 Variation of “Spatial Diversity Index of channel features” (SDI_chanfeat) of 

D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – sections located at river with 

large restoration; 2 – sections located at river with small restoration) 
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Figure 12-29 Variation of “Spatial Diversity Index of substrate” (SDI_substrate) of 

D1/R1/D2/R2 per country (R – restored; D – degraded; 1 – sections located at river with 

large restoration; 2 – sections located at river with small restoration) 
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Table 12-20 p-values of Mann-Whitney U test for 7 mesohabitat parameters shown from 

Figure 12-23 to Figure 12-29 for D1/R1/D2/R2 (R – restored; D – degraded; 1 – sections 

located at river with large restoration; 2 – sections located at river with small 

restoration). 

  
AT_D1 
/ 
AT_R1 

AT_D2 
/ 
AT_R2 

CH_D1 
/ 
CH_R1 

CH_D2 
/ 
CH_R2 

CZ_D1 
/ CZ_R1 

CZ_D2 
/ CZ_R2 

DK_D1 
/ 
DK_R1 

DK_D2 
/ 
DK_R2 

DL_D1 
/ DL_R1 

DL_D2 
/ DL_R2 

NMchanfeat_nat 0.001* 0.000* 0.000* 0.000* 0.001* 0.041* 1.000 1.000 0.000* 0.226 

NMsubstr_nat 0.014* 0.023* 0.131 0.031* 0.026* 0.041* 1.000 0.059 0.000* 0.970 

Mainchan_share 0.001* 0.450 0.000* 0.000* 0.000* 0.010* 0.597 0.070 0.000* 0.001* 

SWI_chanfeat 0.001* 0.000* 0.001* 0.000* 0.000* 0.001* 1.000 1.000 0.000* 0.406 

SWI_substrate 0.002* 0.000* 0.290 0.104 0.007* 0.112 1.000 0.059 0.000* 0.121 

SDI_chanfeat 0.003* 0.010* 0.001* 0.000* 0.112 0.034* 0.000* 1.000 0.000* 0.545 

SDI_substrate 0.705 0.450 0.545 0.064 0.151 0.791 1.000 0.059 0.096 1.000 

                      

  

DM_D1 
/ 
DM_R1 

DM_D2 
/ 
DM_R2 

FI_D1 / 
FI_R1 

FI_D2 / 
FI_R2 

NL_D1 
/ 
NL_R1 

NL_D2 
/ 
NL_R2 

PL_D1 / 
PL_R1 

PL_D2 / 
PL_R2 

SE_D1 / 
SE_R1 

SE_D2 / 
SE_R2 

NMchanfeat_nat 0.000* 0.000* 0.910 0.104 0.450 0.023* 0.571 0.571 0.000* 0.112 

NMsubstr_nat 0.034* 0.014* 0.821 0.121 0.131 1.000 0.326 1.000 0.023* 0.070 

Mainchan_share 0.000* 0.000* 0.199 0.007* 0.000* 0.001* 0.001* 0.000* 0.000* 0.199 

SWI_chanfeat 0.001* 0.000* 0.910 0.199 0.450 0.023* 0.678 0.762 0.001* 0.064 

SWI_substrate 0.174 0.450 0.623 0.140 0.131 0.023* 0.070 0.054 0.257 0.326 

SDI_chanfeat 0.000* 0.000* 0.650 0.131 0.450 0.023* 0.273 0.082 0.002* 0.345 

SDI_substrate 0.162 0.054 0.683 0.131 0.049* 0.023* 0.151 0.003* 0.290 0.450 
*significant differences between degraded and restored sections (bold font, p<0.05); negative 

effect (italic font); positive effect (normal font) 

 

Microhabitat results of restored sections 

Figure 12-30 visualizes the variation of five microhabitat parameters within the ten 

paired restoration projects. Pairwise comparisons between restored and degraded 

sections were tested with Mann-Whitney U-tests, p<0.05. Restoration effect differed 

considerably among restoration projects: In some projects positive restoration effects 

were evident in most parameters, whereas in other restored sections none of the 

parameters indicated such effects.  

The “number of natural microhabitats” along a transect was higher in both large (R1) and 

small (R2) restoration in only one case study (AT). In two case studies, the number of 

microhabitats was larger only in the large restoration (DL, NL), and in two case studies 

larger only in the small-scale restoration (DM, SE). There was no difference in number of 

microhabitats in cases (CH, FI, DK, PL) for either large or small restoration. In CZ there 

was a significant decrease in the number of natural microhabitats identified from the 

degraded compared to the restored section at large restoration. The “Shannon Wiener 

Diversity” index of natural microhabitats showed a similar pattern. The spatial 

composition of microhabitats (SDI_micro “Spatial diversity index”) along a transect 

showed only in one case study (NL) higher values for restored sections at both 
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restoration extents (R1 and R2). At small restoration in DL the “Spatial diversity index” 

was significantly smaller than in the degraded section. 

The “variance of depth” differed in three case studies (AT, DL, NL) at both restoration 

extents. All R1–sites at sand-bed rivers showed significantly higher depth variability than 

the degraded sites, with the exception of PL_R1. 

The “variance of flow” was in many cases also increased in restored sections, in three 

case study sites (AT, NL, PL) for large and small restoration. In sand-bed rivers at large 

restoration extent, the flow was significantly more variable in each case study except in 

SE. 

Only in large restoration did at least four (DL) or all five (AT, NL) parameters have 

significantly higher values in the restored sections than in the degraded ones. Overall, 

however, significant differences were equally frequent in large and small restoration. 

In nine out of the ten case studies (all but CZ) at least one parameter showed a positive 

restoration effect either in large or small restoration. In three case studies (CH, DM, FI), 

significantly positive effects were observed only in small restoration. In two case studies, 

significantly negative effects were observed (CZ_R1, DL_R2), indicating that restoration 

sites show a decreased diversity in one of the five morphological parameters compared 

to the degraded sections.  

 

a) 
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b) 

 

 

c) 
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d) 

 

 

e) 

 

Figure 12-30 a)-e) Variation of the five aquatic microhabitat parameter values a) 

number of natural microhabitats, b) Shannon diversity, c) Spatial Diversity Index, d) 

variance of depth, e) variance of flow; of D1/R1/D2/R2 (R – restored; D – degraded; 1 – 

sections located at river with large restoration; 2 – sections located at river with small 

restoration); Significant differences (Mann-Whitney U test, p<0.05) between degraded 

and restored sections are indicated with an asterisk (red: negative restoration effect 

/blue: positive restoration effect)  
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Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 

Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 

Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 



                 D 4.3 Effects of large- and small-scale river restoration 

   

Page 236 of 240  

Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 

Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 

Survey data Mesohabitat data Microhabitat data Survey 
data Mesohabitat data Microhabitat data 
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Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 

Survey data Mesohabitat data Microhabitat data Survey data Mesohabitat data Microhabitat data 
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Figure 12-31 Restoration effect (ln(R/D)) of all hydromoprohological parameters 

differentiated by case study sections. 
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12.4 Annex D: Fish data 

 

Table 12-21 Habitat guild classification and number of fish caught per section and 

species (coding of sections: country code, river name, degraded D or restored R, small 2 

or large 1) 

Nr  Species name Guild 
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1 Abramis brama EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
2 Alburnoides bipunctatus RHEO 0 0 0 0 214 315 0 0 4 155 0 0 0 0 
3 Alburnus albidus EURY 0 0 0 0 0 0 0 0 10 163 0 0 0 0 
4 Alburnus alburnus EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 9 
5 Anguilla anguilla EURY 0 0 0 0 7 13 0 0 0 0 0 7 29 4 
6 Aspius aspius EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 Barbatula barbatula RHEO 0 0 0 0 52 173 45 197 0 4 52 57 16 398 
8 Barbus barbus RHEO 0 0 0 0 58 377 0 0 0 303 13 2 3 20 
9 Blicca bjoerkna EURY 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
10 Carassius auratus LIMNO 0 0 0 0 0 0 0 0 2 0 0 0 0 0 
11 Carassius gibelio EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 Chondrostoma nasus RHEO 0 0 0 0 0 3 0 0 0 37 1 0 0 33 
13 Cobitis taenia RHEO 0 0 0 0 0 0 0 0 0 0 0 0 35 96 
14 Cottus gobio RHEO 0 0 7 2 1 7 208 652 0 0 1 1 63 74 
15 Cottus poecilopus RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
16 Cyprinus carpio EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
17 Esox lucius EURY 0 0 0 0 0 0 0 0 0 0 0 0 4 9 
18 Gasterosteus aculeatus EURY 0 0 0 0 0 2 0 0 0 0 185 13 5 188 
19 Gobio gobio RHEO 0 0 0 0 0 0 0 0 3 53 47 17 16 123 
20 Gymnocephalus cernuua RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 Lampetra planeri RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
22 Leuciscus leuciscus RHEO 0 0 0 0 0 0 0 0 0 15 0 8 2 78 
23 Lota lota EURY 0 0 0 0 0 0 0 0 0 0 0 0 102 19 
24 Misgurnus fossilis LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
25 Oncorhynchus mykiss RHEO 4 11 10 12 0 0 0 0 0 0 0 0 0 0 
26 Perca fluviatilis EURY 0 0 0 0 0 0 0 0 6 2 0 0 15 42 
27 Phoxinus phoxinus RHEO 0 0 0 0 6 36 29 385 0 0 836 307 1 7 
28 Platichthys flesus LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
29 Pseudorasbora parva LIMNO 0 0 0 0 0 0 0 0 9 5 0 0 0 0 
30 Pungitius pungitius LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 37 
31 Rhodeus amarus LIMNO 0 0 0 0 0 0 0 0 3 1 0 0 0 0 
32 Romanogobio kesslerii RHEO 0 0 0 0 0 0 0 0 4 17 0 0 0 0 
33 Rutilus rutilus EURY 0 0 0 0 0 0 0 0 0 0 0 0 1 33 
34 Salmo salar RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
35 Salmo trutta fario RHEO 13 8 21 34 0 1 263 452 0 0 8 5 2 0 
36 Salmo trutta trutta RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
37 Scardinius erythrophthalmus LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
38 Silurus glanis EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
39 Squalius cephalus EURY 0 0 0 0 64 222 0 0 188 136 3 4 4 32 
40 Telestes soufia RHEO 0 0 0 0 0 3 0 0 0 0 0 0 0 0 
41 Thymallus thymallus RHEO 2 32 48 18 0 0 0 0 0 0 8 6 1 5 
42 Tinca tinca LIMNO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
43 Vimba vimba RHEO 0 0 0 0 0 0 0 0 5 0 0 0 0 0 
 Total  19 51 86 66 402 1152 545 1686 236 891 1154 427 299 1211 
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Table continued 
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1 Abramis brama EURY 0 0 2 2 0 0 1 0 0 0 0 0 0 0 0 0 
2 Alburnoides bipunctatus RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 Alburnus albidus EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 Alburnus alburnus EURY 0 0 41 117 0 0 0 0 0 1 0 0 1 7 11 18 
5 Anguilla anguilla EURY 0 0 1 1 1 0 4 1 0 0 0 0 0 0 0 0 
6 Aspius aspius EURY 0 0 3 8 0 0 0 0 0 0 0 0 0 0 0 0 
7 Barbatula barbatula RHEO 1026 1553 0 0 0 0 0 0 5 8 54 5 0 0 0 0 
8 Barbus barbus RHEO 74 169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 Blicca bjoerkna EURY 0 0 28 51 0 0 0 0 0 0 0 0 0 0 0 0 
10 Carassius auratus LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 Carassius gibelio EURY 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 
12 Chondrostoma nasus RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
13 Cobitis taenia RHEO 0 0 16 37 0 0 0 0 0 0 0 0 0 0 0 0 
14 Cottus gobio RHEO 1378 325 0 0 0 0 0 0 45 72 75 62 0 2 0 0 
15 Cottus poecilopus RHEO 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
16 Cyprinus carpio EURY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 Esox lucius EURY 0 0 8 2 0 3 1 1 0 0 1 1 7 7 1 3 
18 Gasterosteus aculeatus EURY 4 75 0 0 1 7 8 6 0 0 0 0 0 0 0 0 
19 Gobio gobio RHEO 25 10 0 0 0 0 4 1 0 0 0 0 0 0 0 0 
20 Gymnocephalus cernuua RHEO 0 0 0 2 1 0 1 2 0 0 0 0 0 0 0 0 
21 Lampetra planeri RHEO 26 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
22 Leuciscus leuciscus RHEO 1 1 0 0 2 3 9 14 1 0 0 0 0 0 0 0 
23 Lota lota EURY 0 0 1 1 0 1 0 0 0 1 1 1 1 2 0 0 
24 Misgurnus fossilis LIMNO 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
25 Oncorhynchus mykiss RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
26 Perca fluviatilis EURY 0 0 81 271 5 1 4 0 8 13 1 11 1 0 175 4 
27 Phoxinus phoxinus RHEO 4149 5961 0 0 0 0 0 0 24 0 0 0 0 0 0 35 
28 Platichthys flesus LIMNO 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 
29 Pseudorasbora parva LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30 Pungitius pungitius LIMNO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
31 Rhodeus amarus LIMNO 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0 
32 Romanogobio kesslerii RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
33 Rutilus rutilus EURY 0 0 73 287 2 1 4 0 3 9 5 0 1 8 4 4 
34 Salmo salar RHEO 0 0 0 0 1 10 0 81 0 0 0 0 0 30 0 41 
35 Salmo trutta fario RHEO 46 169 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
36 Salmo trutta trutta RHEO 0 0 0 0 0 0 4 16 0 0 0 0 0 6 0 2 
37 Scardinius erythrophthalmus LIMNO 0 0 50 84 0 0 0 0 0 0 0 0 0 0 0 0 
38 Silurus glanis EURY 0 0 17 24 0 0 0 0 0 0 0 0 0 0 0 0 
39 Squalius cephalus EURY 62 19 38 57 0 0 0 0 0 0 0 0 0 0 0 0 
40 Telestes soufia RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
41 Thymallus thymallus RHEO 60 55 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
42 Tinca tinca LIMNO 0 0 8 9 0 0 0 0 0 0 0 0 0 0 0 0 
43 Vimba vimba RHEO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 Total  6851 8351 373 960 15 28 40 122 87 105 138 80 11 62 191 107 
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